Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) |
2 |
|
ssel2 |
⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) |
3 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) |
4 |
2 3
|
sylib |
⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) → ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) |
5 |
4
|
stoic1a |
⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) |
6 |
|
ndmfv |
⊢ ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
7 |
5 6
|
syl |
⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
8 |
1 7
|
eqtrid |
⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |