Metamath Proof Explorer


Theorem nssinpss

Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion nssinpss ( ¬ 𝐴𝐵 ↔ ( 𝐴𝐵 ) ⊊ 𝐴 )

Proof

Step Hyp Ref Expression
1 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
2 1 biantrur ( ( 𝐴𝐵 ) ≠ 𝐴 ↔ ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) )
3 df-ss ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐴 )
4 3 necon3bbii ( ¬ 𝐴𝐵 ↔ ( 𝐴𝐵 ) ≠ 𝐴 )
5 df-pss ( ( 𝐴𝐵 ) ⊊ 𝐴 ↔ ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) )
6 2 4 5 3bitr4i ( ¬ 𝐴𝐵 ↔ ( 𝐴𝐵 ) ⊊ 𝐴 )