Metamath Proof Explorer


Theorem nssne2

Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015)

Ref Expression
Assertion nssne2 ( ( 𝐴𝐶 ∧ ¬ 𝐵𝐶 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 sseq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )
2 1 biimpcd ( 𝐴𝐶 → ( 𝐴 = 𝐵𝐵𝐶 ) )
3 2 necon3bd ( 𝐴𝐶 → ( ¬ 𝐵𝐶𝐴𝐵 ) )
4 3 imp ( ( 𝐴𝐶 ∧ ¬ 𝐵𝐶 ) → 𝐴𝐵 )