Metamath Proof Explorer


Theorem nssss

Description: Negation of subclass relationship. Compare nss . (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion nssss ( ¬ 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 exanali ( ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ↔ ¬ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 ssextss ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 1 2 xchbinxr ( ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ↔ ¬ 𝐴𝐵 )
4 3 bicomi ( ¬ 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )