Description: Negation of subclass relationship. Compare nss . (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nssss | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exanali | ⊢ ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ¬ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) | |
2 | ssextss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) | |
3 | 1 2 | xchbinxr | ⊢ ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ¬ 𝐴 ⊆ 𝐵 ) |
4 | 3 | bicomi | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) |