Step |
Hyp |
Ref |
Expression |
1 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
2 |
|
sucidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) |
3 |
|
eleq2 |
⊢ ( suc 𝐴 = ∅ → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅ ) ) |
4 |
2 3
|
syl5ibcom |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 = ∅ → 𝐴 ∈ ∅ ) ) |
5 |
1 4
|
mtoi |
⊢ ( 𝐴 ∈ V → ¬ suc 𝐴 = ∅ ) |
6 |
|
0ex |
⊢ ∅ ∈ V |
7 |
|
eleq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V ) ) |
8 |
6 7
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ V ) |
9 |
8
|
con3i |
⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐴 = ∅ ) |
10 |
|
sucprc |
⊢ ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 ) |
11 |
10
|
eqeq1d |
⊢ ( ¬ 𝐴 ∈ V → ( suc 𝐴 = ∅ ↔ 𝐴 = ∅ ) ) |
12 |
9 11
|
mtbird |
⊢ ( ¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅ ) |
13 |
5 12
|
pm2.61i |
⊢ ¬ suc 𝐴 = ∅ |
14 |
13
|
neir |
⊢ suc 𝐴 ≠ ∅ |