Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993) (Proof shortened by Wolf Lammen, 2-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nsyl.1 | ⊢ ( 𝜑 → ¬ 𝜓 ) | |
| nsyl.2 | ⊢ ( 𝜒 → 𝜓 ) | ||
| Assertion | nsyl | ⊢ ( 𝜑 → ¬ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl.1 | ⊢ ( 𝜑 → ¬ 𝜓 ) | |
| 2 | nsyl.2 | ⊢ ( 𝜒 → 𝜓 ) | |
| 3 | 1 2 | nsyl3 | ⊢ ( 𝜒 → ¬ 𝜑 ) |
| 4 | 3 | con2i | ⊢ ( 𝜑 → ¬ 𝜒 ) |