Metamath Proof Explorer


Theorem nsyl3

Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995)

Ref Expression
Hypotheses nsyl3.1 ( 𝜑 → ¬ 𝜓 )
nsyl3.2 ( 𝜒𝜓 )
Assertion nsyl3 ( 𝜒 → ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 nsyl3.1 ( 𝜑 → ¬ 𝜓 )
2 nsyl3.2 ( 𝜒𝜓 )
3 1 a1i ( 𝜒 → ( 𝜑 → ¬ 𝜓 ) )
4 2 3 mt2d ( 𝜒 → ¬ 𝜑 )