Metamath Proof Explorer


Theorem nsyl4

Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996)

Ref Expression
Hypotheses nsyl4.1 ( 𝜑𝜓 )
nsyl4.2 ( ¬ 𝜑𝜒 )
Assertion nsyl4 ( ¬ 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 nsyl4.1 ( 𝜑𝜓 )
2 nsyl4.2 ( ¬ 𝜑𝜒 )
3 2 con1i ( ¬ 𝜒𝜑 )
4 3 1 syl ( ¬ 𝜒𝜓 )