Metamath Proof Explorer


Theorem nsyl5

Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024)

Ref Expression
Hypotheses nsyl4.1 ( 𝜑𝜓 )
nsyl4.2 ( ¬ 𝜑𝜒 )
Assertion nsyl5 ( ¬ 𝜓𝜒 )

Proof

Step Hyp Ref Expression
1 nsyl4.1 ( 𝜑𝜓 )
2 nsyl4.2 ( ¬ 𝜑𝜒 )
3 1 2 nsyl4 ( ¬ 𝜒𝜓 )
4 3 con1i ( ¬ 𝜓𝜒 )