Description: A negated syllogism deduction. (Contributed by NM, 9-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nsyld.1 | ⊢ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) | |
| nsyld.2 | ⊢ ( 𝜑 → ( 𝜏 → 𝜒 ) ) | ||
| Assertion | nsyld | ⊢ ( 𝜑 → ( 𝜓 → ¬ 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyld.1 | ⊢ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) | |
| 2 | nsyld.2 | ⊢ ( 𝜑 → ( 𝜏 → 𝜒 ) ) | |
| 3 | 2 | con3d | ⊢ ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜏 ) ) |
| 4 | 1 3 | syld | ⊢ ( 𝜑 → ( 𝜓 → ¬ 𝜏 ) ) |