Metamath Proof Explorer


Theorem nsyli

Description: A negated syllogism inference. (Contributed by NM, 3-May-1994)

Ref Expression
Hypotheses nsyli.1 ( 𝜑 → ( 𝜓𝜒 ) )
nsyli.2 ( 𝜃 → ¬ 𝜒 )
Assertion nsyli ( 𝜑 → ( 𝜃 → ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 nsyli.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 nsyli.2 ( 𝜃 → ¬ 𝜒 )
3 1 con3d ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜓 ) )
4 2 3 syl5 ( 𝜑 → ( 𝜃 → ¬ 𝜓 ) )