Description: A negated syllogism inference. (Contributed by NM, 3-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nsyli.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| nsyli.2 | ⊢ ( 𝜃 → ¬ 𝜒 ) | ||
| Assertion | nsyli | ⊢ ( 𝜑 → ( 𝜃 → ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyli.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | nsyli.2 | ⊢ ( 𝜃 → ¬ 𝜒 ) | |
| 3 | 1 | con3d | ⊢ ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜓 ) ) |
| 4 | 2 3 | syl5 | ⊢ ( 𝜑 → ( 𝜃 → ¬ 𝜓 ) ) |