Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
3 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
4 |
1
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
5 |
1
|
ntrss |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ∧ 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
8 |
|
sseq2 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∅ ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∅ ) ) |
10 |
7 9
|
mpbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∅ ) |
11 |
|
ss0 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∅ → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) |