Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
ntrval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
3 |
2
|
eqeq1d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ↔ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ) ) |
4 |
|
neq0 |
⊢ ( ¬ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ↔ ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
5 |
4
|
con1bii |
⊢ ( ¬ ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ) |
6 |
|
ancom |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) ↔ ( 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑥 ) ) |
7 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆 ) ) |
8 |
7
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑥 ) ) |
9 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) ) |
10 |
6 8 9
|
3bitri |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) ↔ ( 𝑥 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) ) |
12 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) ) |
13 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) ) |
14 |
11 12 13
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) |
15 |
14
|
exbii |
⊢ ( ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) |
16 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) |
17 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
18 |
17
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
19 |
15 16 18
|
3bitr2i |
⊢ ( ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
20 |
19
|
notbii |
⊢ ( ¬ ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ¬ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
21 |
5 20
|
bitr3i |
⊢ ( ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ↔ ¬ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
22 |
|
ralinexa |
⊢ ( ∀ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 → ¬ ∃ 𝑦 𝑦 ∈ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
23 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆 ) |
24 |
|
neq0 |
⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
25 |
24
|
con1bii |
⊢ ( ¬ ∃ 𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅ ) |
26 |
23 25
|
imbi12i |
⊢ ( ( 𝑥 ∈ 𝒫 𝑆 → ¬ ∃ 𝑦 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) |
27 |
26
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 → ¬ ∃ 𝑦 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) |
28 |
21 22 27
|
3bitr2i |
⊢ ( ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) |
29 |
3 28
|
bitrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) ) |