| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cldval.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 3 |  | pwexg | ⊢ ( 𝑋  ∈  𝐽  →  𝒫  𝑋  ∈  V ) | 
						
							| 4 |  | mptexg | ⊢ ( 𝒫  𝑋  ∈  V  →  ( 𝑥  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑥 ) )  ∈  V ) | 
						
							| 5 | 2 3 4 | 3syl | ⊢ ( 𝐽  ∈  Top  →  ( 𝑥  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑥 ) )  ∈  V ) | 
						
							| 6 |  | unieq | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  ∪  𝐽 ) | 
						
							| 7 | 6 1 | eqtr4di | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  𝑋 ) | 
						
							| 8 | 7 | pweqd | ⊢ ( 𝑗  =  𝐽  →  𝒫  ∪  𝑗  =  𝒫  𝑋 ) | 
						
							| 9 |  | ineq1 | ⊢ ( 𝑗  =  𝐽  →  ( 𝑗  ∩  𝒫  𝑥 )  =  ( 𝐽  ∩  𝒫  𝑥 ) ) | 
						
							| 10 | 9 | unieqd | ⊢ ( 𝑗  =  𝐽  →  ∪  ( 𝑗  ∩  𝒫  𝑥 )  =  ∪  ( 𝐽  ∩  𝒫  𝑥 ) ) | 
						
							| 11 | 8 10 | mpteq12dv | ⊢ ( 𝑗  =  𝐽  →  ( 𝑥  ∈  𝒫  ∪  𝑗  ↦  ∪  ( 𝑗  ∩  𝒫  𝑥 ) )  =  ( 𝑥  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑥 ) ) ) | 
						
							| 12 |  | df-ntr | ⊢ int  =  ( 𝑗  ∈  Top  ↦  ( 𝑥  ∈  𝒫  ∪  𝑗  ↦  ∪  ( 𝑗  ∩  𝒫  𝑥 ) ) ) | 
						
							| 13 | 11 12 | fvmptg | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑥  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑥 ) )  ∈  V )  →  ( int ‘ 𝐽 )  =  ( 𝑥  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑥 ) ) ) | 
						
							| 14 | 5 13 | mpdan | ⊢ ( 𝐽  ∈  Top  →  ( int ‘ 𝐽 )  =  ( 𝑥  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑥 ) ) ) |