Step |
Hyp |
Ref |
Expression |
1 |
|
ntrivcvg.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ntrivcvg.2 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
3 |
|
ntrivcvg.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
4 |
|
uzm1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 = 𝑀 ∨ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
5 |
4 1
|
eleq2s |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝑛 = 𝑀 ∨ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → ( 𝑛 = 𝑀 ∨ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
7 |
|
seqeq1 |
⊢ ( 𝑛 = 𝑀 → seq 𝑛 ( · , 𝐹 ) = seq 𝑀 ( · , 𝐹 ) ) |
8 |
7
|
breq1d |
⊢ ( 𝑛 = 𝑀 → ( seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
9 |
|
seqex |
⊢ seq 𝑀 ( · , 𝐹 ) ∈ V |
10 |
|
vex |
⊢ 𝑦 ∈ V |
11 |
9 10
|
breldm |
⊢ ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) |
12 |
8 11
|
syl6bi |
⊢ ( 𝑛 = 𝑀 → ( seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
13 |
12
|
adantld |
⊢ ( 𝑛 = 𝑀 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
14 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → ( 𝑛 − 1 ) ∈ 𝑍 ) |
15 |
3
|
ad5ant15 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
16 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
17 |
1 16
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
19 |
17 18
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) → 𝑛 ∈ ℤ ) |
20 |
19
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) → 𝑛 ∈ ℂ ) |
21 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) → 1 ∈ ℂ ) |
22 |
20 21
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
23 |
22
|
seqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) → seq ( ( 𝑛 − 1 ) + 1 ) ( · , 𝐹 ) = seq 𝑛 ( · , 𝐹 ) ) |
24 |
23
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) → ( seq ( ( 𝑛 − 1 ) + 1 ) ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
25 |
24
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq ( ( 𝑛 − 1 ) + 1 ) ( · , 𝐹 ) ⇝ 𝑦 ) |
26 |
1 14 15 25
|
clim2prod |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ⇝ ( ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 − 1 ) ) · 𝑦 ) ) |
27 |
|
ovex |
⊢ ( ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 − 1 ) ) · 𝑦 ) ∈ V |
28 |
9 27
|
breldm |
⊢ ( seq 𝑀 ( · , 𝐹 ) ⇝ ( ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 − 1 ) ) · 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) |
29 |
26 28
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) |
30 |
29
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ∧ ( 𝑛 − 1 ) ∈ 𝑍 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) |
31 |
30
|
expcom |
⊢ ( ( 𝑛 − 1 ) ∈ 𝑍 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
32 |
1
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
33 |
31 32
|
eleq2s |
⊢ ( ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
34 |
13 33
|
jaoi |
⊢ ( ( 𝑛 = 𝑀 ∨ ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
35 |
6 34
|
mpcom |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) |
36 |
35
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
37 |
36
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
38 |
37
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
39 |
38
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) ) |
40 |
2 39
|
mpd |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) |