| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrivcvgfvn0.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
ntrivcvgfvn0.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 3 |
|
ntrivcvgfvn0.3 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) |
| 4 |
|
ntrivcvgfvn0.4 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 5 |
|
ntrivcvgfvn0.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 6 |
|
fclim |
⊢ ⇝ : dom ⇝ ⟶ ℂ |
| 7 |
|
ffun |
⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) |
| 8 |
6 7
|
ax-mp |
⊢ Fun ⇝ |
| 9 |
|
funbrfv |
⊢ ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) ) |
| 10 |
8 3 9
|
mpsyl |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) |
| 12 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 13 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 14 |
1 13
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
| 15 |
14 2
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → 𝑁 ∈ ℤ ) |
| 17 |
|
seqex |
⊢ seq 𝑀 ( · , 𝐹 ) ∈ V |
| 18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → seq 𝑀 ( · , 𝐹 ) ∈ V ) |
| 19 |
|
0cnd |
⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → 0 ∈ ℂ ) |
| 20 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑁 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ) ↔ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) ) ) |
| 22 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ) ↔ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) ) ) |
| 24 |
|
fveqeq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ) ↔ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) ) |
| 26 |
|
fveqeq2 |
⊢ ( 𝑚 = 𝑘 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = 0 ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ) ↔ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = 0 ) ) ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) |
| 29 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 30 |
|
uztrn |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 31 |
29 30
|
sylan2 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 |
31
|
3adant3 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 33 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 35 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( 0 · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 36 |
35
|
3ad2ant3 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( 0 · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 37 |
|
peano2uz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 38 |
1
|
uztrn2 |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 39 |
2 37 38
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 40 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 41 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 42 |
41
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 43 |
42
|
rspcv |
⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 44 |
40 43
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 45 |
39 44
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 46 |
45
|
ancoms |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 47 |
46
|
mul02d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ) → ( 0 · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = 0 ) |
| 48 |
47
|
3adant3 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( 0 · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = 0 ) |
| 49 |
34 36 48
|
3eqtrd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) |
| 50 |
49
|
3exp |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) ) |
| 51 |
50
|
adantrd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) ) |
| 52 |
51
|
a2d |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) ) |
| 53 |
21 23 25 27 28 52
|
uzind4i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = 0 ) ) |
| 54 |
53
|
impcom |
⊢ ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = 0 ) |
| 55 |
12 16 18 19 54
|
climconst |
⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → seq 𝑀 ( · , 𝐹 ) ⇝ 0 ) |
| 56 |
|
funbrfv |
⊢ ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 0 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 0 ) ) |
| 57 |
8 55 56
|
mpsyl |
⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 0 ) |
| 58 |
11 57
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → 𝑋 = 0 ) |
| 59 |
58
|
ex |
⊢ ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 → 𝑋 = 0 ) ) |
| 60 |
59
|
necon3d |
⊢ ( 𝜑 → ( 𝑋 ≠ 0 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) ) |
| 61 |
4 60
|
mpd |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) |