| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrivcvgn0.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
ntrivcvgn0.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
ntrivcvgn0.3 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) |
| 4 |
|
ntrivcvgn0.4 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 5 |
2
|
uzidd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 |
5 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 7 |
|
climrel |
⊢ Rel ⇝ |
| 8 |
7
|
brrelex2i |
⊢ ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → 𝑋 ∈ V ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 10 |
4 3
|
jca |
⊢ ( 𝜑 → ( 𝑋 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) ) |
| 11 |
|
neeq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ≠ 0 ↔ 𝑋 ≠ 0 ) ) |
| 12 |
|
breq2 |
⊢ ( 𝑦 = 𝑋 → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) ) |
| 13 |
11 12
|
anbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝑋 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) ) ) |
| 14 |
9 10 13
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
| 15 |
|
seqeq1 |
⊢ ( 𝑛 = 𝑀 → seq 𝑛 ( · , 𝐹 ) = seq 𝑀 ( · , 𝐹 ) ) |
| 16 |
15
|
breq1d |
⊢ ( 𝑛 = 𝑀 → ( seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
| 17 |
16
|
anbi2d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) ) |
| 18 |
17
|
exbidv |
⊢ ( 𝑛 = 𝑀 → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) ) |
| 19 |
18
|
rspcev |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
| 20 |
6 14 19
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |