Metamath Proof Explorer


Theorem ntrivcvgn0

Description: A product that converges to a nonzero value converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses ntrivcvgn0.1 𝑍 = ( ℤ𝑀 )
ntrivcvgn0.2 ( 𝜑𝑀 ∈ ℤ )
ntrivcvgn0.3 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 )
ntrivcvgn0.4 ( 𝜑𝑋 ≠ 0 )
Assertion ntrivcvgn0 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )

Proof

Step Hyp Ref Expression
1 ntrivcvgn0.1 𝑍 = ( ℤ𝑀 )
2 ntrivcvgn0.2 ( 𝜑𝑀 ∈ ℤ )
3 ntrivcvgn0.3 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 )
4 ntrivcvgn0.4 ( 𝜑𝑋 ≠ 0 )
5 2 uzidd ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
6 5 1 eleqtrrdi ( 𝜑𝑀𝑍 )
7 climrel Rel ⇝
8 7 brrelex2i ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋𝑋 ∈ V )
9 3 8 syl ( 𝜑𝑋 ∈ V )
10 4 3 jca ( 𝜑 → ( 𝑋 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) )
11 neeq1 ( 𝑦 = 𝑋 → ( 𝑦 ≠ 0 ↔ 𝑋 ≠ 0 ) )
12 breq2 ( 𝑦 = 𝑋 → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) )
13 11 12 anbi12d ( 𝑦 = 𝑋 → ( ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝑋 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) ) )
14 9 10 13 spcedv ( 𝜑 → ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) )
15 seqeq1 ( 𝑛 = 𝑀 → seq 𝑛 ( · , 𝐹 ) = seq 𝑀 ( · , 𝐹 ) )
16 15 breq1d ( 𝑛 = 𝑀 → ( seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) )
17 16 anbi2d ( 𝑛 = 𝑀 → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) )
18 17 exbidv ( 𝑛 = 𝑀 → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) )
19 18 rspcev ( ( 𝑀𝑍 ∧ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑦 ) ) → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
20 6 14 19 syl2anc ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )