Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
sscon |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) |
4 |
|
difss |
⊢ ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 |
5 |
3 4
|
jctil |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) ) |
6 |
1
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
7 |
6
|
3expb |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
8 |
5 7
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
9 |
8
|
sscond |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
10 |
|
sstr2 |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋 ) ) |
11 |
10
|
impcom |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
12 |
1
|
ntrval2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ) |
14 |
1
|
ntrval2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
15 |
14
|
adantrr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
16 |
9 13 15
|
3sstr4d |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
17 |
16
|
3impb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |