Metamath Proof Explorer


Theorem ntrss2

Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion ntrss2 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 1 ntrval ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝐽 ∩ 𝒫 𝑆 ) )
3 inss2 ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝒫 𝑆
4 3 unissi ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝒫 𝑆
5 unipw 𝒫 𝑆 = 𝑆
6 4 5 sseqtri ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝑆
7 2 6 eqsstrdi ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 )