Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
Assertion | ntrtop | ⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
3 | ssid | ⊢ 𝑋 ⊆ 𝑋 | |
4 | 1 | isopn3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋 ) → ( 𝑋 ∈ 𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) ) |
5 | 3 4 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( 𝑋 ∈ 𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) ) |
6 | 2 5 | mpbid | ⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) |