Metamath Proof Explorer


Theorem ntrtop

Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion ntrtop ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
3 ssid 𝑋𝑋
4 1 isopn3 ( ( 𝐽 ∈ Top ∧ 𝑋𝑋 ) → ( 𝑋𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) )
5 3 4 mpan2 ( 𝐽 ∈ Top → ( 𝑋𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) )
6 2 5 mpbid ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 )