Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → 𝐴 ⊆ ℝ ) |
2 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) |
3 |
|
inss2 |
⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 |
4 |
|
ovolssnul |
⊢ ( ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) = 0 ) |
5 |
3 4
|
mp3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) = 0 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) = 0 ) |
7 |
6
|
oveq1d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( 0 + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) |
8 |
|
difss |
⊢ ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 |
9 |
|
ovolsscl |
⊢ ( ( ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
10 |
8 9
|
mp3an1 |
⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℂ ) |
13 |
12
|
addid2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( 0 + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) |
14 |
7 13
|
eqtrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) |
15 |
|
simprl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → 𝑥 ⊆ ℝ ) |
16 |
|
ovolss |
⊢ ( ( ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑥 ) ) |
17 |
8 15 16
|
sylancr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑥 ) ) |
18 |
14 17
|
eqbrtrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
19 |
18
|
expr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ 𝑥 ⊆ ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
20 |
2 19
|
sylan2 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
21 |
20
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
22 |
|
ismbl2 |
⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
23 |
1 21 22
|
sylanbrc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) = 0 ) → 𝐴 ∈ dom vol ) |