Step |
Hyp |
Ref |
Expression |
1 |
|
1rp |
⊢ 1 ∈ ℝ+ |
2 |
1
|
ne0ii |
⊢ ℝ+ ≠ ∅ |
3 |
|
r19.2z |
⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) |
4 |
2 3
|
mpan |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) |
5 |
|
simprl |
⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝐴 ⊆ 𝑦 ) |
6 |
|
mblss |
⊢ ( 𝑦 ∈ dom vol → 𝑦 ⊆ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝑦 ⊆ ℝ ) |
8 |
5 7
|
sstrd |
⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝐴 ⊆ ℝ ) |
9 |
8
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
10 |
9
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
11 |
4 10
|
syl |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
12 |
|
inss1 |
⊢ ( 𝑧 ∩ 𝐴 ) ⊆ 𝑧 |
13 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ ) |
14 |
13
|
adantr |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → 𝑧 ⊆ ℝ ) |
15 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
16 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∩ 𝐴 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) |
17 |
12 14 15 16
|
mp3an2i |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) |
18 |
|
difssd |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( 𝑧 ∖ 𝐴 ) ⊆ 𝑧 ) |
19 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∖ 𝐴 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) |
20 |
18 14 15 19
|
syl3anc |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) |
21 |
17 20
|
readdcld |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
23 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
24 |
|
difssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ) |
25 |
7
|
adantl |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑦 ⊆ ℝ ) |
26 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
28 |
|
simprrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑦 ) ≤ 𝑥 ) |
29 |
|
ovollecl |
⊢ ( ( 𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ( vol* ‘ 𝑦 ) ∈ ℝ ) |
30 |
25 27 28 29
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑦 ) ∈ ℝ ) |
31 |
|
ovolsscl |
⊢ ( ( ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ ∧ ( vol* ‘ 𝑦 ) ∈ ℝ ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) |
32 |
24 25 30 31
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) |
33 |
23 32
|
readdcld |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
34 |
23 27
|
readdcld |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + 𝑥 ) ∈ ℝ ) |
35 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) |
36 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) |
37 |
|
inss1 |
⊢ ( 𝑧 ∩ 𝑦 ) ⊆ 𝑧 |
38 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑧 ⊆ ℝ ) |
39 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∩ 𝑦 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℝ ) |
40 |
37 38 23 39
|
mp3an2i |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℝ ) |
41 |
|
difssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝑦 ) ⊆ 𝑧 ) |
42 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∖ 𝑦 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) |
43 |
41 38 23 42
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) |
44 |
43 32
|
readdcld |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
45 |
|
simprrl |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝐴 ⊆ 𝑦 ) |
46 |
|
sslin |
⊢ ( 𝐴 ⊆ 𝑦 → ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ) |
47 |
45 46
|
syl |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ) |
48 |
37 38
|
sstrid |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∩ 𝑦 ) ⊆ ℝ ) |
49 |
|
ovolss |
⊢ ( ( ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ∧ ( 𝑧 ∩ 𝑦 ) ⊆ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ) |
50 |
47 48 49
|
syl2anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ) |
51 |
38
|
ssdifssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝑦 ) ⊆ ℝ ) |
52 |
25
|
ssdifssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∖ 𝐴 ) ⊆ ℝ ) |
53 |
51 52
|
unssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ) |
54 |
|
ovolun |
⊢ ( ( ( ( 𝑧 ∖ 𝑦 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) ∧ ( ( 𝑦 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
55 |
51 43 52 32 54
|
syl22anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
56 |
|
ovollecl |
⊢ ( ( ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ∧ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ∧ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
57 |
53 44 55 56
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
58 |
|
ssun1 |
⊢ 𝑧 ⊆ ( 𝑧 ∪ 𝑦 ) |
59 |
|
undif1 |
⊢ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) = ( 𝑧 ∪ 𝑦 ) |
60 |
58 59
|
sseqtrri |
⊢ 𝑧 ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) |
61 |
|
ssdif |
⊢ ( 𝑧 ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) → ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) ) |
62 |
60 61
|
ax-mp |
⊢ ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) |
63 |
|
difundir |
⊢ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) = ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) |
64 |
62 63
|
sseqtri |
⊢ ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) |
65 |
|
difun1 |
⊢ ( 𝑧 ∖ ( 𝑦 ∪ 𝐴 ) ) = ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) |
66 |
|
ssequn2 |
⊢ ( 𝐴 ⊆ 𝑦 ↔ ( 𝑦 ∪ 𝐴 ) = 𝑦 ) |
67 |
45 66
|
sylib |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∪ 𝐴 ) = 𝑦 ) |
68 |
67
|
difeq2d |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ ( 𝑦 ∪ 𝐴 ) ) = ( 𝑧 ∖ 𝑦 ) ) |
69 |
65 68
|
eqtr3id |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) = ( 𝑧 ∖ 𝑦 ) ) |
70 |
69
|
uneq1d |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) = ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) |
71 |
64 70
|
sseqtrid |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝐴 ) ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) |
72 |
|
ovolss |
⊢ ( ( ( 𝑧 ∖ 𝐴 ) ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ∧ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ) |
73 |
71 53 72
|
syl2anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ) |
74 |
36 57 44 73 55
|
letrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
75 |
35 36 40 44 50 74
|
le2addd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
76 |
|
simprl |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑦 ∈ dom vol ) |
77 |
|
mblsplit |
⊢ ( ( 𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ 𝑧 ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) ) |
78 |
76 38 23 77
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑧 ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) ) |
79 |
78
|
oveq1d |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
80 |
40
|
recnd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℂ ) |
81 |
43
|
recnd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℂ ) |
82 |
32
|
recnd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℂ ) |
83 |
80 81 82
|
addassd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
84 |
79 83
|
eqtrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
85 |
75 84
|
breqtrrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
86 |
|
difss |
⊢ ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 |
87 |
|
ovolss |
⊢ ( ( ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑦 ) ) |
88 |
86 25 87
|
sylancr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑦 ) ) |
89 |
32 30 27 88 28
|
letrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ 𝑥 ) |
90 |
32 27 23 89
|
leadd2dd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
91 |
22 33 34 85 90
|
letrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
92 |
91
|
rexlimdvaa |
⊢ ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
93 |
92
|
ralimdva |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
94 |
93
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
95 |
21
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
96 |
95
|
rexrd |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ* ) |
97 |
|
simprr |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
98 |
|
xralrple |
⊢ ( ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ* ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
99 |
96 97 98
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
100 |
94 99
|
mpbird |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) |
101 |
100
|
expr |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ 𝑧 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
102 |
101
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
103 |
|
ismbl2 |
⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) ) |
104 |
11 102 103
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ∈ dom vol ) |