| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 2 |
1
|
ne0ii |
⊢ ℝ+ ≠ ∅ |
| 3 |
|
r19.2z |
⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 4 |
2 3
|
mpan |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 5 |
|
simprl |
⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝐴 ⊆ 𝑦 ) |
| 6 |
|
mblss |
⊢ ( 𝑦 ∈ dom vol → 𝑦 ⊆ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝑦 ⊆ ℝ ) |
| 8 |
5 7
|
sstrd |
⊢ ( ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) → 𝐴 ⊆ ℝ ) |
| 9 |
8
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
| 10 |
9
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
| 11 |
4 10
|
syl |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
| 12 |
|
inss1 |
⊢ ( 𝑧 ∩ 𝐴 ) ⊆ 𝑧 |
| 13 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → 𝑧 ⊆ ℝ ) |
| 15 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 16 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∩ 𝐴 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) |
| 17 |
12 14 15 16
|
mp3an2i |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) |
| 18 |
|
difssd |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( 𝑧 ∖ 𝐴 ) ⊆ 𝑧 ) |
| 19 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∖ 𝐴 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) |
| 20 |
18 14 15 19
|
syl3anc |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) |
| 21 |
17 20
|
readdcld |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 23 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 24 |
|
difssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ) |
| 25 |
7
|
adantl |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑦 ⊆ ℝ ) |
| 26 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 28 |
|
simprrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑦 ) ≤ 𝑥 ) |
| 29 |
|
ovollecl |
⊢ ( ( 𝑦 ⊆ ℝ ∧ 𝑥 ∈ ℝ ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ( vol* ‘ 𝑦 ) ∈ ℝ ) |
| 30 |
25 27 28 29
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑦 ) ∈ ℝ ) |
| 31 |
|
ovolsscl |
⊢ ( ( ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ ∧ ( vol* ‘ 𝑦 ) ∈ ℝ ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) |
| 32 |
24 25 30 31
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) |
| 33 |
23 32
|
readdcld |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 34 |
23 27
|
readdcld |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + 𝑥 ) ∈ ℝ ) |
| 35 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ∈ ℝ ) |
| 36 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ∈ ℝ ) |
| 37 |
|
inss1 |
⊢ ( 𝑧 ∩ 𝑦 ) ⊆ 𝑧 |
| 38 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑧 ⊆ ℝ ) |
| 39 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∩ 𝑦 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℝ ) |
| 40 |
37 38 23 39
|
mp3an2i |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℝ ) |
| 41 |
|
difssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝑦 ) ⊆ 𝑧 ) |
| 42 |
|
ovolsscl |
⊢ ( ( ( 𝑧 ∖ 𝑦 ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) |
| 43 |
41 38 23 42
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) |
| 44 |
43 32
|
readdcld |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 45 |
|
simprrl |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝐴 ⊆ 𝑦 ) |
| 46 |
|
sslin |
⊢ ( 𝐴 ⊆ 𝑦 → ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ) |
| 48 |
37 38
|
sstrid |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∩ 𝑦 ) ⊆ ℝ ) |
| 49 |
|
ovolss |
⊢ ( ( ( 𝑧 ∩ 𝐴 ) ⊆ ( 𝑧 ∩ 𝑦 ) ∧ ( 𝑧 ∩ 𝑦 ) ⊆ ℝ ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ) |
| 50 |
47 48 49
|
syl2anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) ≤ ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ) |
| 51 |
38
|
ssdifssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝑦 ) ⊆ ℝ ) |
| 52 |
25
|
ssdifssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∖ 𝐴 ) ⊆ ℝ ) |
| 53 |
51 52
|
unssd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ) |
| 54 |
|
ovolun |
⊢ ( ( ( ( 𝑧 ∖ 𝑦 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℝ ) ∧ ( ( 𝑦 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 55 |
51 43 52 32 54
|
syl22anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 56 |
|
ovollecl |
⊢ ( ( ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ∧ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ∧ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 57 |
53 44 55 56
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 58 |
|
ssun1 |
⊢ 𝑧 ⊆ ( 𝑧 ∪ 𝑦 ) |
| 59 |
|
undif1 |
⊢ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) = ( 𝑧 ∪ 𝑦 ) |
| 60 |
58 59
|
sseqtrri |
⊢ 𝑧 ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) |
| 61 |
|
ssdif |
⊢ ( 𝑧 ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) → ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) ) |
| 62 |
60 61
|
ax-mp |
⊢ ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) |
| 63 |
|
difundir |
⊢ ( ( ( 𝑧 ∖ 𝑦 ) ∪ 𝑦 ) ∖ 𝐴 ) = ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) |
| 64 |
62 63
|
sseqtri |
⊢ ( 𝑧 ∖ 𝐴 ) ⊆ ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) |
| 65 |
|
difun1 |
⊢ ( 𝑧 ∖ ( 𝑦 ∪ 𝐴 ) ) = ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) |
| 66 |
|
ssequn2 |
⊢ ( 𝐴 ⊆ 𝑦 ↔ ( 𝑦 ∪ 𝐴 ) = 𝑦 ) |
| 67 |
45 66
|
sylib |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑦 ∪ 𝐴 ) = 𝑦 ) |
| 68 |
67
|
difeq2d |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ ( 𝑦 ∪ 𝐴 ) ) = ( 𝑧 ∖ 𝑦 ) ) |
| 69 |
65 68
|
eqtr3id |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) = ( 𝑧 ∖ 𝑦 ) ) |
| 70 |
69
|
uneq1d |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( ( 𝑧 ∖ 𝑦 ) ∖ 𝐴 ) ∪ ( 𝑦 ∖ 𝐴 ) ) = ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) |
| 71 |
64 70
|
sseqtrid |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( 𝑧 ∖ 𝐴 ) ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) |
| 72 |
|
ovolss |
⊢ ( ( ( 𝑧 ∖ 𝐴 ) ⊆ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ∧ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 73 |
71 53 72
|
syl2anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( ( 𝑧 ∖ 𝑦 ) ∪ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 74 |
36 57 44 73 55
|
letrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 75 |
35 36 40 44 50 74
|
le2addd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
| 76 |
|
simprl |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → 𝑦 ∈ dom vol ) |
| 77 |
|
mblsplit |
⊢ ( ( 𝑦 ∈ dom vol ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ 𝑧 ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) ) |
| 78 |
76 38 23 77
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ 𝑧 ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) ) |
| 79 |
78
|
oveq1d |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 80 |
40
|
recnd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) ∈ ℂ ) |
| 81 |
43
|
recnd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ∈ ℂ ) |
| 82 |
32
|
recnd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ∈ ℂ ) |
| 83 |
80 81 82
|
addassd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
| 84 |
79 83
|
eqtrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝑧 ∩ 𝑦 ) ) + ( ( vol* ‘ ( 𝑧 ∖ 𝑦 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) ) |
| 85 |
75 84
|
breqtrrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ) |
| 86 |
|
difss |
⊢ ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 |
| 87 |
|
ovolss |
⊢ ( ( ( 𝑦 ∖ 𝐴 ) ⊆ 𝑦 ∧ 𝑦 ⊆ ℝ ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑦 ) ) |
| 88 |
86 25 87
|
sylancr |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ ( vol* ‘ 𝑦 ) ) |
| 89 |
32 30 27 88 28
|
letrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ≤ 𝑥 ) |
| 90 |
32 27 23 89
|
leadd2dd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ 𝑧 ) + ( vol* ‘ ( 𝑦 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
| 91 |
22 33 34 85 90
|
letrd |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑦 ∈ dom vol ∧ ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
| 92 |
91
|
rexlimdvaa |
⊢ ( ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
| 93 |
92
|
ralimdva |
⊢ ( ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
| 94 |
93
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) |
| 95 |
21
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 96 |
95
|
rexrd |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ* ) |
| 97 |
|
simprr |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 98 |
|
xralrple |
⊢ ( ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ∈ ℝ* ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
| 99 |
96 97 98
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑥 ) ) ) |
| 100 |
94 99
|
mpbird |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) |
| 101 |
100
|
expr |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) ∧ 𝑧 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
| 102 |
101
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
| 103 |
|
ismbl2 |
⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑧 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) ) |
| 104 |
11 102 103
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ dom vol ( 𝐴 ⊆ 𝑦 ∧ ( vol* ‘ 𝑦 ) ≤ 𝑥 ) → 𝐴 ∈ dom vol ) |