Metamath Proof Explorer


Theorem nulmo

Description: There exists at most one empty set. With either axnul or axnulALT or ax-nul , this proves that there exists a unique empty set. In practice, once the language of classes is available, we use the stronger characterization among classes eq0 . (Contributed by NM, 22-Dec-2007) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022) (Proof shortened by Wolf Lammen, 26-Apr-2023)

Ref Expression
Assertion nulmo ∃* 𝑥𝑦 ¬ 𝑦𝑥

Proof

Step Hyp Ref Expression
1 nfv 𝑥
2 1 axextmo ∃* 𝑥𝑦 ( 𝑦𝑥 ↔ ⊥ )
3 nbfal ( ¬ 𝑦𝑥 ↔ ( 𝑦𝑥 ↔ ⊥ ) )
4 3 albii ( ∀ 𝑦 ¬ 𝑦𝑥 ↔ ∀ 𝑦 ( 𝑦𝑥 ↔ ⊥ ) )
5 4 mobii ( ∃* 𝑥𝑦 ¬ 𝑦𝑥 ↔ ∃* 𝑥𝑦 ( 𝑦𝑥 ↔ ⊥ ) )
6 2 5 mpbir ∃* 𝑥𝑦 ¬ 𝑦𝑥