Metamath Proof Explorer
Description: Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014)
|
|
Ref |
Expression |
|
Hypotheses |
numnncl.1 |
⊢ 𝑇 ∈ ℕ0 |
|
|
numnncl.2 |
⊢ 𝐴 ∈ ℕ0 |
|
Assertion |
num0h |
⊢ 𝐴 = ( ( 𝑇 · 0 ) + 𝐴 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numnncl.1 |
⊢ 𝑇 ∈ ℕ0 |
| 2 |
|
numnncl.2 |
⊢ 𝐴 ∈ ℕ0 |
| 3 |
1
|
nn0cni |
⊢ 𝑇 ∈ ℂ |
| 4 |
3
|
mul01i |
⊢ ( 𝑇 · 0 ) = 0 |
| 5 |
4
|
oveq1i |
⊢ ( ( 𝑇 · 0 ) + 𝐴 ) = ( 0 + 𝐴 ) |
| 6 |
2
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
| 7 |
6
|
addlidi |
⊢ ( 0 + 𝐴 ) = 𝐴 |
| 8 |
5 7
|
eqtr2i |
⊢ 𝐴 = ( ( 𝑇 · 0 ) + 𝐴 ) |