Metamath Proof Explorer
Description: Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014)
|
|
Ref |
Expression |
|
Hypotheses |
numnncl.1 |
⊢ 𝑇 ∈ ℕ0 |
|
|
numnncl.2 |
⊢ 𝐴 ∈ ℕ0 |
|
Assertion |
num0h |
⊢ 𝐴 = ( ( 𝑇 · 0 ) + 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
numnncl.1 |
⊢ 𝑇 ∈ ℕ0 |
2 |
|
numnncl.2 |
⊢ 𝐴 ∈ ℕ0 |
3 |
1
|
nn0cni |
⊢ 𝑇 ∈ ℂ |
4 |
3
|
mul01i |
⊢ ( 𝑇 · 0 ) = 0 |
5 |
4
|
oveq1i |
⊢ ( ( 𝑇 · 0 ) + 𝐴 ) = ( 0 + 𝐴 ) |
6 |
2
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
7 |
6
|
addid2i |
⊢ ( 0 + 𝐴 ) = 𝐴 |
8 |
5 7
|
eqtr2i |
⊢ 𝐴 = ( ( 𝑇 · 0 ) + 𝐴 ) |