| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V ) | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  𝑋  ∈  dom  card ) | 
						
							| 3 |  | elmapi | ⊢ ( 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 )  →  𝑓 : 𝐴 ⟶ ( 𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  𝑓 : 𝐴 ⟶ ( 𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 5 | 4 | frnd | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ran  𝑓  ⊆  ( 𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 6 | 5 | difss2d | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ran  𝑓  ⊆  𝒫  𝑋 ) | 
						
							| 7 |  | sspwuni | ⊢ ( ran  𝑓  ⊆  𝒫  𝑋  ↔  ∪  ran  𝑓  ⊆  𝑋 ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ∪  ran  𝑓  ⊆  𝑋 ) | 
						
							| 9 |  | ssnum | ⊢ ( ( 𝑋  ∈  dom  card  ∧  ∪  ran  𝑓  ⊆  𝑋 )  →  ∪  ran  𝑓  ∈  dom  card ) | 
						
							| 10 | 2 8 9 | syl2anc | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ∪  ran  𝑓  ∈  dom  card ) | 
						
							| 11 |  | ssdifin0 | ⊢ ( ran  𝑓  ⊆  ( 𝒫  𝑋  ∖  { ∅ } )  →  ( ran  𝑓  ∩  { ∅ } )  =  ∅ ) | 
						
							| 12 | 5 11 | syl | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ( ran  𝑓  ∩  { ∅ } )  =  ∅ ) | 
						
							| 13 |  | disjsn | ⊢ ( ( ran  𝑓  ∩  { ∅ } )  =  ∅  ↔  ¬  ∅  ∈  ran  𝑓 ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ¬  ∅  ∈  ran  𝑓 ) | 
						
							| 15 |  | ac5num | ⊢ ( ( ∪  ran  𝑓  ∈  dom  card  ∧  ¬  ∅  ∈  ran  𝑓 )  →  ∃ ℎ ( ℎ : ran  𝑓 ⟶ ∪  ran  𝑓  ∧  ∀ 𝑦  ∈  ran  𝑓 ( ℎ ‘ 𝑦 )  ∈  𝑦 ) ) | 
						
							| 16 | 10 14 15 | syl2anc | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ∃ ℎ ( ℎ : ran  𝑓 ⟶ ∪  ran  𝑓  ∧  ∀ 𝑦  ∈  ran  𝑓 ( ℎ ‘ 𝑦 )  ∈  𝑦 ) ) | 
						
							| 17 |  | simpllr | ⊢ ( ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  ∧  ( ℎ : ran  𝑓 ⟶ ∪  ran  𝑓  ∧  ∀ 𝑦  ∈  ran  𝑓 ( ℎ ‘ 𝑦 )  ∈  𝑦 ) )  →  𝐴  ∈  V ) | 
						
							| 18 | 4 | ffnd | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  𝑓  Fn  𝐴 ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( ℎ ‘ 𝑦 )  =  ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 20 |  | id | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  𝑦  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 21 | 19 20 | eleq12d | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( ( ℎ ‘ 𝑦 )  ∈  𝑦  ↔  ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 22 | 21 | ralrn | ⊢ ( 𝑓  Fn  𝐴  →  ( ∀ 𝑦  ∈  ran  𝑓 ( ℎ ‘ 𝑦 )  ∈  𝑦  ↔  ∀ 𝑥  ∈  𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 23 | 18 22 | syl | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ( ∀ 𝑦  ∈  ran  𝑓 ( ℎ ‘ 𝑦 )  ∈  𝑦  ↔  ∀ 𝑥  ∈  𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 24 | 23 | biimpa | ⊢ ( ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  ∧  ∀ 𝑦  ∈  ran  𝑓 ( ℎ ‘ 𝑦 )  ∈  𝑦 )  →  ∀ 𝑥  ∈  𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 25 | 24 | adantrl | ⊢ ( ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  ∧  ( ℎ : ran  𝑓 ⟶ ∪  ran  𝑓  ∧  ∀ 𝑦  ∈  ran  𝑓 ( ℎ ‘ 𝑦 )  ∈  𝑦 ) )  →  ∀ 𝑥  ∈  𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 26 |  | acnlem | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑥  ∈  𝐴 ( ℎ ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 27 | 17 25 26 | syl2anc | ⊢ ( ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  ∧  ( ℎ : ran  𝑓 ⟶ ∪  ran  𝑓  ∧  ∀ 𝑦  ∈  ran  𝑓 ( ℎ ‘ 𝑦 )  ∈  𝑦 ) )  →  ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 28 | 16 27 | exlimddv | ⊢ ( ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  ∧  𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  →  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 30 |  | isacn | ⊢ ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  →  ( 𝑋  ∈  AC  𝐴  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 31 | 29 30 | mpbird | ⊢ ( ( 𝑋  ∈  dom  card  ∧  𝐴  ∈  V )  →  𝑋  ∈  AC  𝐴 ) | 
						
							| 32 | 31 | expcom | ⊢ ( 𝐴  ∈  V  →  ( 𝑋  ∈  dom  card  →  𝑋  ∈  AC  𝐴 ) ) | 
						
							| 33 | 1 32 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑋  ∈  dom  card  →  𝑋  ∈  AC  𝐴 ) ) |