| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwlk1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
numclwlk1.c |
⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ∧ ( ( 2nd ‘ 𝑤 ) ‘ ( 𝑁 − 2 ) ) = 𝑋 ) } |
| 3 |
|
numclwlk1.f |
⊢ 𝐹 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } |
| 4 |
|
rusgrusgr |
⊢ ( 𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph ) |
| 5 |
|
usgruspgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USPGraph ) |
| 7 |
6
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐺 ∈ USPGraph ) |
| 8 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑋 ∈ 𝑉 ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 10 |
|
uzuzle23 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 11 |
10
|
ad2antll |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 12 |
|
eqid |
⊢ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } |
| 13 |
1 2 12
|
dlwwlknondlwlknonen |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐶 ≈ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) |
| 14 |
7 9 11 13
|
syl3anc |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐶 ≈ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) |
| 15 |
4
|
anim2i |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph ) ) |
| 16 |
15
|
ancomd |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
| 17 |
1
|
isfusgr |
⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
| 18 |
16 17
|
sylibr |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐺 ∈ FinUSGraph ) |
| 19 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 20 |
19
|
nnnn0d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ0 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑁 ∈ ℕ0 ) |
| 22 |
|
wlksnfi |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0 ) → { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 } ∈ Fin ) |
| 23 |
18 21 22
|
syl2an |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 } ∈ Fin ) |
| 24 |
|
clwlkswks |
⊢ ( ClWalks ‘ 𝐺 ) ⊆ ( Walks ‘ 𝐺 ) |
| 25 |
24
|
a1i |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ClWalks ‘ 𝐺 ) ⊆ ( Walks ‘ 𝐺 ) ) |
| 26 |
|
simp21 |
⊢ ( ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ∧ ( ( 2nd ‘ 𝑤 ) ‘ ( 𝑁 − 2 ) ) = 𝑋 ) ∧ 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ) → ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 ) |
| 27 |
25 26
|
rabssrabd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ∧ ( ( 2nd ‘ 𝑤 ) ‘ ( 𝑁 − 2 ) ) = 𝑋 ) } ⊆ { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 } ) |
| 28 |
23 27
|
ssfid |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ∧ ( ( 2nd ‘ 𝑤 ) ‘ ( 𝑁 − 2 ) ) = 𝑋 ) } ∈ Fin ) |
| 29 |
2 28
|
eqeltrid |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐶 ∈ Fin ) |
| 30 |
1
|
clwwlknonfin |
⊢ ( 𝑉 ∈ Fin → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∈ Fin ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∈ Fin ) |
| 32 |
|
ssrab2 |
⊢ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ⊆ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) |
| 33 |
32
|
a1i |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ⊆ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) |
| 34 |
31 33
|
ssfid |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ∈ Fin ) |
| 35 |
|
hashen |
⊢ ( ( 𝐶 ∈ Fin ∧ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ∈ Fin ) → ( ( ♯ ‘ 𝐶 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) ↔ 𝐶 ≈ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) ) |
| 36 |
29 34 35
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ( ♯ ‘ 𝐶 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) ↔ 𝐶 ≈ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) ) |
| 37 |
14 36
|
mpbird |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ 𝐶 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) ) |
| 38 |
|
eqidd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) ) |
| 39 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) → ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) |
| 40 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑤 ‘ ( 𝑛 − 2 ) ) = ( 𝑤 ‘ ( 𝑁 − 2 ) ) ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) → ( 𝑤 ‘ ( 𝑛 − 2 ) ) = ( 𝑤 ‘ ( 𝑁 − 2 ) ) ) |
| 42 |
|
simpl |
⊢ ( ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) → 𝑣 = 𝑋 ) |
| 43 |
41 42
|
eqeq12d |
⊢ ( ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) → ( ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 ↔ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 ) ) |
| 44 |
39 43
|
rabeqbidv |
⊢ ( ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) → { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) |
| 45 |
44
|
adantl |
⊢ ( ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) ∧ ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) ) → { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) |
| 46 |
|
ovex |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∈ V |
| 47 |
46
|
rabex |
⊢ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ∈ V |
| 48 |
47
|
a1i |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ∈ V ) |
| 49 |
38 45 9 11 48
|
ovmpod |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( 𝑋 ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) 𝑁 ) = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) |
| 50 |
49
|
fveq2d |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ ( 𝑋 ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) 𝑁 ) ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∣ ( 𝑤 ‘ ( 𝑁 − 2 ) ) = 𝑋 } ) ) |
| 51 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) |
| 52 |
|
eqid |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) |
| 53 |
1 51 52
|
numclwwlk1 |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ ( 𝑋 ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) 𝑁 ) ) = ( 𝐾 · ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) ) ) |
| 54 |
8 1
|
eleqtrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
| 56 |
|
uz3m2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 − 2 ) ∈ ℕ ) |
| 57 |
56
|
ad2antll |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( 𝑁 − 2 ) ∈ ℕ ) |
| 58 |
|
clwwlknonclwlknonen |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 − 2 ) ∈ ℕ ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) |
| 59 |
7 55 57 58
|
syl3anc |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) |
| 60 |
3 59
|
eqbrtrid |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐹 ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) |
| 61 |
|
uznn0sub |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 2 ) ∈ ℕ0 ) |
| 62 |
10 61
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 − 2 ) ∈ ℕ0 ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑁 − 2 ) ∈ ℕ0 ) |
| 64 |
|
wlksnfi |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ ( 𝑁 − 2 ) ∈ ℕ0 ) → { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) } ∈ Fin ) |
| 65 |
18 63 64
|
syl2an |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) } ∈ Fin ) |
| 66 |
|
simp2l |
⊢ ( ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ∧ 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ) → ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) ) |
| 67 |
25 66
|
rabssrabd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ⊆ { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) } ) |
| 68 |
65 67
|
ssfid |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ∈ Fin ) |
| 69 |
3 68
|
eqeltrid |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐹 ∈ Fin ) |
| 70 |
1
|
clwwlknonfin |
⊢ ( 𝑉 ∈ Fin → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ∈ Fin ) |
| 71 |
70
|
ad2antrr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ∈ Fin ) |
| 72 |
|
hashen |
⊢ ( ( 𝐹 ∈ Fin ∧ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) ↔ 𝐹 ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) ) |
| 73 |
69 71 72
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) ↔ 𝐹 ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) ) |
| 74 |
60 73
|
mpbird |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) ) |
| 75 |
74
|
eqcomd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( 𝐾 · ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ) ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |
| 77 |
53 76
|
eqtrd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ ( 𝑋 ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) 𝑁 ) ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |
| 78 |
37 50 77
|
3eqtr2d |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |