| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } )  | 
						
						
							| 3 | 
							
								
							 | 
							numclwwlk.h | 
							⊢ 𝐻  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } )  | 
						
						
							| 4 | 
							
								
							 | 
							numclwwlk.r | 
							⊢ 𝑅  =  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↦  ( 𝑥  prefix  ( 𝑁  +  1 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑅 ‘ 𝑥 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqeq12d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( 𝑅 ‘ 𝑦 )  =  ( 𝑦  prefix  ( 𝑁  +  1 ) )  ↔  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑦  prefix  ( 𝑁  +  1 ) ) )  ↔  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							imbi2d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑦  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑦  prefix  ( 𝑁  +  1 ) ) ) )  ↔  ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) ) )  | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							numclwlk2lem2fv | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑦  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑦  prefix  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							chvarvv | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant1 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imp | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) )  | 
						
						
							| 15 | 
							
								1 2 3 4
							 | 
							numclwlk2lem2f | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑅 : ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ⟶ ( 𝑋 𝑄 𝑁 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ffvelcdmda | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑅 ‘ 𝑥 )  ∈  ( 𝑋 𝑄 𝑁 ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑋 𝑄 𝑁 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ralrimiva | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑋 𝑄 𝑁 ) )  | 
						
						
							| 19 | 
							
								1 2 3
							 | 
							numclwwlk2lem1 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  →  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imp | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑢  ∈  ( 𝑋 𝑄 𝑁 ) )  →  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  | 
						
						
							| 21 | 
							
								1 2
							 | 
							numclwwlkovq | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  | 
						
						
							| 22 | 
							
								21
							 | 
							eleq2d | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  ↔  𝑢  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							3adant1 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  ↔  𝑢  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  𝑢  →  ( 𝑤 ‘ 0 )  =  ( 𝑢 ‘ 0 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqeq1d | 
							⊢ ( 𝑤  =  𝑢  →  ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  ( 𝑢 ‘ 0 )  =  𝑋 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑢  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑢 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							neeq1d | 
							⊢ ( 𝑤  =  𝑢  →  ( ( lastS ‘ 𝑤 )  ≠  𝑋  ↔  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							anbi12d | 
							⊢ ( 𝑤  =  𝑢  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 )  ↔  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							elrab | 
							⊢ ( 𝑢  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  ↔  ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) ) )  | 
						
						
							| 30 | 
							
								23 29
							 | 
							bitrdi | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  ↔  ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							wwlknbp1 | 
							⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							3simpc | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( 𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							syl | 
							⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 34 | 
							
								1
							 | 
							wrdeqi | 
							⊢ Word  𝑉  =  Word  ( Vtx ‘ 𝐺 )  | 
						
						
							| 35 | 
							
								34
							 | 
							eleq2i | 
							⊢ ( 𝑢  ∈  Word  𝑉  ↔  𝑢  ∈  Word  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							anbi1i | 
							⊢ ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ↔  ( 𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							sylibr | 
							⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  𝑢  ∈  Word  𝑉 )  | 
						
						
							| 39 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 40 | 
							
								
							 | 
							2nn | 
							⊢ 2  ∈  ℕ  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ )  | 
						
						
							| 42 | 
							
								41
							 | 
							nnzd | 
							⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℤ )  | 
						
						
							| 43 | 
							
								
							 | 
							nn0pzuz | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  ∈  ℤ )  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 44 | 
							
								39 42 43
							 | 
							syl2anc | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 45 | 
							
								3
							 | 
							numclwwlkovh | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  =  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							sylan2 | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  =  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } )  | 
						
						
							| 47 | 
							
								46
							 | 
							eleq2d | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  𝑥  ∈  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } ) )  | 
						
						
							| 48 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ‘ 0 )  =  ( 𝑥 ‘ 0 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							eqeq1d | 
							⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  ( 𝑥 ‘ 0 )  =  𝑋 ) )  | 
						
						
							| 50 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  =  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) ) )  | 
						
						
							| 51 | 
							
								50 48
							 | 
							neeq12d | 
							⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 )  ↔  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) )  | 
						
						
							| 52 | 
							
								49 51
							 | 
							anbi12d | 
							⊢ ( 𝑤  =  𝑥  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) )  ↔  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							elrab | 
							⊢ ( 𝑥  ∈  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) }  ↔  ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) )  | 
						
						
							| 54 | 
							
								47 53
							 | 
							bitrdi | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							3adant1 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantl | 
							⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) ) )  | 
						
						
							| 57 | 
							
								1
							 | 
							clwwlknbp | 
							⊢ ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑢  ∈  Word  𝑉  →  ( ♯ ‘ 𝑢 )  ∈  ℕ0 )  | 
						
						
							| 59 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  𝑥  ∈  Word  𝑉 )  | 
						
						
							| 60 | 
							
								
							 | 
							df-2 | 
							⊢ 2  =  ( 1  +  1 )  | 
						
						
							| 61 | 
							
								60
							 | 
							a1i | 
							⊢ ( 𝑁  ∈  ℕ  →  2  =  ( 1  +  1 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							oveq2d | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  =  ( 𝑁  +  ( 1  +  1 ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ )  | 
						
						
							| 64 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℂ )  | 
						
						
							| 65 | 
							
								63 64 64
							 | 
							addassd | 
							⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  ( 1  +  1 ) ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							eqtr4d | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  =  ( ( 𝑁  +  1 )  +  1 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantl | 
							⊢ ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  +  2 )  =  ( ( 𝑁  +  1 )  +  1 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							eqeq2d | 
							⊢ ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ↔  ( ♯ ‘ 𝑥 )  =  ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							biimpcd | 
							⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  →  ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ 𝑥 )  =  ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ 𝑥 )  =  ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							impcom | 
							⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  ( ♯ ‘ 𝑥 )  =  ( ( 𝑁  +  1 )  +  1 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑢 )  +  1 )  =  ( ( 𝑁  +  1 )  +  1 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ad3antlr | 
							⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  ( ( ♯ ‘ 𝑢 )  +  1 )  =  ( ( 𝑁  +  1 )  +  1 ) )  | 
						
						
							| 74 | 
							
								71 73
							 | 
							eqtr4d | 
							⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) )  | 
						
						
							| 75 | 
							
								59 74
							 | 
							jca | 
							⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							exp31 | 
							⊢ ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) )  | 
						
						
							| 77 | 
							
								58 76
							 | 
							sylan | 
							⊢ ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							com12 | 
							⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							impcom | 
							⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							com12 | 
							⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							ancoms | 
							⊢ ( ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 ) )  →  ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 83 | 
							
								57 82
							 | 
							syl | 
							⊢ ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  →  ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantr | 
							⊢ ( ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) )  →  ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							com12 | 
							⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 86 | 
							
								56 85
							 | 
							sylbid | 
							⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							ralrimiv | 
							⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) )  | 
						
						
							| 88 | 
							
								38 87
							 | 
							jca | 
							⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							ex | 
							⊢ ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) )  | 
						
						
							| 90 | 
							
								37 89
							 | 
							syl | 
							⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							adantr | 
							⊢ ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							imp | 
							⊢ ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑣 𝑋  | 
						
						
							| 94 | 
							
								
							 | 
							nfmpo1 | 
							⊢ Ⅎ 𝑣 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } )  | 
						
						
							| 95 | 
							
								3 94
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑣 𝐻  | 
						
						
							| 96 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑣 ( 𝑁  +  2 )  | 
						
						
							| 97 | 
							
								93 95 96
							 | 
							nfov | 
							⊢ Ⅎ 𝑣 ( 𝑋 𝐻 ( 𝑁  +  2 ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							reuccatpfxs1 | 
							⊢ ( ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) )  | 
						
						
							| 99 | 
							
								92 98
							 | 
							syl | 
							⊢ ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							imp | 
							⊢ ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) )  | 
						
						
							| 101 | 
							
								31
							 | 
							simp3d | 
							⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							eqcomd | 
							⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  +  1 )  =  ( ♯ ‘ 𝑢 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑁  +  1 )  =  ( ♯ ‘ 𝑢 ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							eqeq2d | 
							⊢ ( ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ↔  𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							reubidva | 
							⊢ ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ↔  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) )  | 
						
						
							| 107 | 
							
								100 106
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							exp31 | 
							⊢ ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							com12 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) )  | 
						
						
							| 110 | 
							
								30 109
							 | 
							sylbid | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							imp | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑢  ∈  ( 𝑋 𝑄 𝑁 ) )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 112 | 
							
								20 111
							 | 
							mpd | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑢  ∈  ( 𝑋 𝑄 𝑁 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							ralrimiva | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∀ 𝑢  ∈  ( 𝑋 𝑄 𝑁 ) ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) )  | 
						
						
							| 114 | 
							
								4
							 | 
							f1ompt | 
							⊢ ( 𝑅 : ( 𝑋 𝐻 ( 𝑁  +  2 ) ) –1-1-onto→ ( 𝑋 𝑄 𝑁 )  ↔  ( ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑋 𝑄 𝑁 )  ∧  ∀ 𝑢  ∈  ( 𝑋 𝑄 𝑁 ) ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 115 | 
							
								18 113 114
							 | 
							sylanbrc | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑅 : ( 𝑋 𝐻 ( 𝑁  +  2 ) ) –1-1-onto→ ( 𝑋 𝑄 𝑁 ) )  |