Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
numclwwlk.q |
⊢ 𝑄 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑣 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑣 ) } ) |
3 |
|
numclwwlk.h |
⊢ 𝐻 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) ≠ 𝑣 } ) |
4 |
|
numclwwlk.r |
⊢ 𝑅 = ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↦ ( 𝑥 prefix ( 𝑁 + 1 ) ) ) |
5 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↔ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ 𝑥 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑅 ‘ 𝑦 ) = ( 𝑦 prefix ( 𝑁 + 1 ) ) ↔ ( 𝑅 ‘ 𝑥 ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) |
9 |
5 8
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅 ‘ 𝑦 ) = ( 𝑦 prefix ( 𝑁 + 1 ) ) ) ↔ ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅 ‘ 𝑥 ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑦 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅 ‘ 𝑦 ) = ( 𝑦 prefix ( 𝑁 + 1 ) ) ) ) ↔ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅 ‘ 𝑥 ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) ) ) |
11 |
1 2 3 4
|
numclwlk2lem2fv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑦 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅 ‘ 𝑦 ) = ( 𝑦 prefix ( 𝑁 + 1 ) ) ) ) |
12 |
10 11
|
chvarvv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅 ‘ 𝑥 ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅 ‘ 𝑥 ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( 𝑅 ‘ 𝑥 ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) |
15 |
1 2 3 4
|
numclwlk2lem2f |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑅 : ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ⟶ ( 𝑋 𝑄 𝑁 ) ) |
16 |
15
|
ffvelrnda |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( 𝑅 ‘ 𝑥 ) ∈ ( 𝑋 𝑄 𝑁 ) ) |
17 |
14 16
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( 𝑥 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑋 𝑄 𝑁 ) ) |
18 |
17
|
ralrimiva |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑋 𝑄 𝑁 ) ) |
19 |
1 2 3
|
numclwwlk2lem1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) → ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ) |
20 |
19
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) ) → ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) |
21 |
1 2
|
numclwwlkovq |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑋 𝑄 𝑁 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ) |
22 |
21
|
eleq2d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) ↔ 𝑢 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ) ) |
23 |
22
|
3adant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) ↔ 𝑢 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ) ) |
24 |
|
fveq1 |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 ‘ 0 ) = ( 𝑢 ‘ 0 ) ) |
25 |
24
|
eqeq1d |
⊢ ( 𝑤 = 𝑢 → ( ( 𝑤 ‘ 0 ) = 𝑋 ↔ ( 𝑢 ‘ 0 ) = 𝑋 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑤 = 𝑢 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑢 ) ) |
27 |
26
|
neeq1d |
⊢ ( 𝑤 = 𝑢 → ( ( lastS ‘ 𝑤 ) ≠ 𝑋 ↔ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) |
28 |
25 27
|
anbi12d |
⊢ ( 𝑤 = 𝑢 → ( ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ↔ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ) |
29 |
28
|
elrab |
⊢ ( 𝑢 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ↔ ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ) |
30 |
23 29
|
bitrdi |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) ↔ ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ) ) |
31 |
|
wwlknbp1 |
⊢ ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑢 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ) |
32 |
|
3simpc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑢 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) → ( 𝑢 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ) |
33 |
31 32
|
syl |
⊢ ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑢 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ) |
34 |
1
|
wrdeqi |
⊢ Word 𝑉 = Word ( Vtx ‘ 𝐺 ) |
35 |
34
|
eleq2i |
⊢ ( 𝑢 ∈ Word 𝑉 ↔ 𝑢 ∈ Word ( Vtx ‘ 𝐺 ) ) |
36 |
35
|
anbi1i |
⊢ ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ↔ ( 𝑢 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ) |
37 |
33 36
|
sylibr |
⊢ ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ) |
38 |
|
simpll |
⊢ ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → 𝑢 ∈ Word 𝑉 ) |
39 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
40 |
|
2nn |
⊢ 2 ∈ ℕ |
41 |
40
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
42 |
41
|
nnzd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℤ ) |
43 |
|
nn0pzuz |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ ) → ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
44 |
39 42 43
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
45 |
3
|
numclwwlkovh |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑋 𝐻 ( 𝑁 + 2 ) ) = { 𝑤 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) } ) |
46 |
44 45
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑋 𝐻 ( 𝑁 + 2 ) ) = { 𝑤 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) } ) |
47 |
46
|
eleq2d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↔ 𝑥 ∈ { 𝑤 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) } ) ) |
48 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 0 ) = ( 𝑥 ‘ 0 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 0 ) = 𝑋 ↔ ( 𝑥 ‘ 0 ) = 𝑋 ) ) |
50 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) = ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ) |
51 |
50 48
|
neeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ↔ ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑥 ‘ 0 ) ) ) |
52 |
49 51
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) ↔ ( ( 𝑥 ‘ 0 ) = 𝑋 ∧ ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑥 ‘ 0 ) ) ) ) |
53 |
52
|
elrab |
⊢ ( 𝑥 ∈ { 𝑤 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) } ↔ ( 𝑥 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( 𝑥 ‘ 0 ) = 𝑋 ∧ ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑥 ‘ 0 ) ) ) ) |
54 |
47 53
|
bitrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↔ ( 𝑥 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( 𝑥 ‘ 0 ) = 𝑋 ∧ ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑥 ‘ 0 ) ) ) ) ) |
55 |
54
|
3adant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↔ ( 𝑥 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( 𝑥 ‘ 0 ) = 𝑋 ∧ ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑥 ‘ 0 ) ) ) ) ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↔ ( 𝑥 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( 𝑥 ‘ 0 ) = 𝑋 ∧ ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑥 ‘ 0 ) ) ) ) ) |
57 |
1
|
clwwlknbp |
⊢ ( 𝑥 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ) ) |
58 |
|
lencl |
⊢ ( 𝑢 ∈ Word 𝑉 → ( ♯ ‘ 𝑢 ) ∈ ℕ0 ) |
59 |
|
simprr |
⊢ ( ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) ) → 𝑥 ∈ Word 𝑉 ) |
60 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
61 |
60
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 = ( 1 + 1 ) ) |
62 |
61
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 2 ) = ( 𝑁 + ( 1 + 1 ) ) ) |
63 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
64 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
65 |
63 64 64
|
addassd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + ( 1 + 1 ) ) ) |
66 |
62 65
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 2 ) = ( ( 𝑁 + 1 ) + 1 ) ) |
67 |
66
|
adantl |
⊢ ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 + 2 ) = ( ( 𝑁 + 1 ) + 1 ) ) |
68 |
67
|
eqeq2d |
⊢ ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) → ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ↔ ( ♯ ‘ 𝑥 ) = ( ( 𝑁 + 1 ) + 1 ) ) ) |
69 |
68
|
biimpcd |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) → ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ 𝑥 ) = ( ( 𝑁 + 1 ) + 1 ) ) ) |
70 |
69
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) → ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ 𝑥 ) = ( ( 𝑁 + 1 ) + 1 ) ) ) |
71 |
70
|
impcom |
⊢ ( ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) ) → ( ♯ ‘ 𝑥 ) = ( ( 𝑁 + 1 ) + 1 ) ) |
72 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑢 ) + 1 ) = ( ( 𝑁 + 1 ) + 1 ) ) |
73 |
72
|
ad3antlr |
⊢ ( ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) ) → ( ( ♯ ‘ 𝑢 ) + 1 ) = ( ( 𝑁 + 1 ) + 1 ) ) |
74 |
71 73
|
eqtr4d |
⊢ ( ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) ) → ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) |
75 |
59 74
|
jca |
⊢ ( ( ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) |
76 |
75
|
exp31 |
⊢ ( ( ( ♯ ‘ 𝑢 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) → ( 𝑁 ∈ ℕ → ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) ) |
77 |
58 76
|
sylan |
⊢ ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) → ( 𝑁 ∈ ℕ → ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) ) |
78 |
77
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) → ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) ) |
79 |
78
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) → ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) ) |
80 |
79
|
impcom |
⊢ ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
81 |
80
|
com12 |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑥 ∈ Word 𝑉 ) → ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
82 |
81
|
ancoms |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ) → ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
83 |
57 82
|
syl |
⊢ ( 𝑥 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) → ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
84 |
83
|
adantr |
⊢ ( ( 𝑥 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( 𝑥 ‘ 0 ) = 𝑋 ∧ ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑥 ‘ 0 ) ) ) → ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
85 |
84
|
com12 |
⊢ ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑥 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( 𝑥 ‘ 0 ) = 𝑋 ∧ ( 𝑥 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑥 ‘ 0 ) ) ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
86 |
56 85
|
sylbid |
⊢ ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
87 |
86
|
ralrimiv |
⊢ ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) |
88 |
38 87
|
jca |
⊢ ( ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑢 ∈ Word 𝑉 ∧ ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
89 |
88
|
ex |
⊢ ( ( 𝑢 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑢 ∈ Word 𝑉 ∧ ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) ) |
90 |
37 89
|
syl |
⊢ ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑢 ∈ Word 𝑉 ∧ ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) ) |
91 |
90
|
adantr |
⊢ ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑢 ∈ Word 𝑉 ∧ ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) ) |
92 |
91
|
imp |
⊢ ( ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑢 ∈ Word 𝑉 ∧ ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) ) |
93 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑋 |
94 |
|
nfmpo1 |
⊢ Ⅎ 𝑣 ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) ≠ 𝑣 } ) |
95 |
3 94
|
nfcxfr |
⊢ Ⅎ 𝑣 𝐻 |
96 |
|
nfcv |
⊢ Ⅎ 𝑣 ( 𝑁 + 2 ) |
97 |
93 95 96
|
nfov |
⊢ Ⅎ 𝑣 ( 𝑋 𝐻 ( 𝑁 + 2 ) ) |
98 |
97
|
reuccatpfxs1 |
⊢ ( ( 𝑢 ∈ Word 𝑉 ∧ ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑥 ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) → ( ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( ♯ ‘ 𝑢 ) ) ) ) |
99 |
92 98
|
syl |
⊢ ( ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) → ( ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( ♯ ‘ 𝑢 ) ) ) ) |
100 |
99
|
imp |
⊢ ( ( ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) ∧ ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( ♯ ‘ 𝑢 ) ) ) |
101 |
31
|
simp3d |
⊢ ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ♯ ‘ 𝑢 ) = ( 𝑁 + 1 ) ) |
102 |
101
|
eqcomd |
⊢ ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 + 1 ) = ( ♯ ‘ 𝑢 ) ) |
103 |
102
|
ad4antr |
⊢ ( ( ( ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) ∧ ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ∧ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( 𝑁 + 1 ) = ( ♯ ‘ 𝑢 ) ) |
104 |
103
|
oveq2d |
⊢ ( ( ( ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) ∧ ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ∧ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( 𝑥 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( ♯ ‘ 𝑢 ) ) ) |
105 |
104
|
eqeq2d |
⊢ ( ( ( ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) ∧ ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ∧ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ↔ 𝑢 = ( 𝑥 prefix ( ♯ ‘ 𝑢 ) ) ) ) |
106 |
105
|
reubidva |
⊢ ( ( ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) ∧ ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ↔ ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( ♯ ‘ 𝑢 ) ) ) ) |
107 |
100 106
|
mpbird |
⊢ ( ( ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ) ∧ ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) |
108 |
107
|
exp31 |
⊢ ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) ) |
109 |
108
|
com12 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑢 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑢 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑢 ) ≠ 𝑋 ) ) → ( ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) ) |
110 |
30 109
|
sylbid |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) → ( ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) ) |
111 |
110
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) ) → ( ∃! 𝑣 ∈ 𝑉 ( 𝑢 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) |
112 |
20 111
|
mpd |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) ) → ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) |
113 |
112
|
ralrimiva |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ∀ 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) |
114 |
4
|
f1ompt |
⊢ ( 𝑅 : ( 𝑋 𝐻 ( 𝑁 + 2 ) ) –1-1-onto→ ( 𝑋 𝑄 𝑁 ) ↔ ( ∀ 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ( 𝑥 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑋 𝑄 𝑁 ) ∧ ∀ 𝑢 ∈ ( 𝑋 𝑄 𝑁 ) ∃! 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) 𝑢 = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) ) |
115 |
18 113 114
|
sylanbrc |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑅 : ( 𝑋 𝐻 ( 𝑁 + 2 ) ) –1-1-onto→ ( 𝑋 𝑄 𝑁 ) ) |