Metamath Proof Explorer


Theorem numclwlk2lem2fv

Description: Value of the function R . (Contributed by Alexander van der Vekens, 6-Oct-2018) (Revised by AV, 31-May-2021) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses numclwwlk.v 𝑉 = ( Vtx ‘ 𝐺 )
numclwwlk.q 𝑄 = ( 𝑣𝑉 , 𝑛 ∈ ℕ ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑣 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑣 ) } )
numclwwlk.h 𝐻 = ( 𝑣𝑉 , 𝑛 ∈ ( ℤ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) ≠ 𝑣 } )
numclwwlk.r 𝑅 = ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↦ ( 𝑥 prefix ( 𝑁 + 1 ) ) )
Assertion numclwlk2lem2fv ( ( 𝑋𝑉𝑁 ∈ ℕ ) → ( 𝑊 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅𝑊 ) = ( 𝑊 prefix ( 𝑁 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 numclwwlk.v 𝑉 = ( Vtx ‘ 𝐺 )
2 numclwwlk.q 𝑄 = ( 𝑣𝑉 , 𝑛 ∈ ℕ ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑣 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑣 ) } )
3 numclwwlk.h 𝐻 = ( 𝑣𝑉 , 𝑛 ∈ ( ℤ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) ≠ 𝑣 } )
4 numclwwlk.r 𝑅 = ( 𝑥 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↦ ( 𝑥 prefix ( 𝑁 + 1 ) ) )
5 oveq1 ( 𝑥 = 𝑊 → ( 𝑥 prefix ( 𝑁 + 1 ) ) = ( 𝑊 prefix ( 𝑁 + 1 ) ) )
6 simpr ( ( ( 𝑋𝑉𝑁 ∈ ℕ ) ∧ 𝑊 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → 𝑊 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) )
7 ovexd ( ( ( 𝑋𝑉𝑁 ∈ ℕ ) ∧ 𝑊 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ V )
8 4 5 6 7 fvmptd3 ( ( ( 𝑋𝑉𝑁 ∈ ℕ ) ∧ 𝑊 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) → ( 𝑅𝑊 ) = ( 𝑊 prefix ( 𝑁 + 1 ) ) )
9 8 ex ( ( 𝑋𝑉𝑁 ∈ ℕ ) → ( 𝑊 ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) → ( 𝑅𝑊 ) = ( 𝑊 prefix ( 𝑁 + 1 ) ) ) )