Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
extwwlkfab.c |
⊢ 𝐶 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) |
3 |
|
extwwlkfab.f |
⊢ 𝐹 = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) |
4 |
|
rusgrusgr |
⊢ ( 𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph ) |
5 |
4
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐺 ∈ USGraph ) |
6 |
|
simprl |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝑋 ∈ 𝑉 ) |
7 |
|
simprr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
8 |
1 2 3
|
numclwwlk1lem2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑋 𝐶 𝑁 ) ≈ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) |
9 |
5 6 7 8
|
syl3anc |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( 𝑋 𝐶 𝑁 ) ≈ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) |
10 |
|
hasheni |
⊢ ( ( 𝑋 𝐶 𝑁 ) ≈ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) → ( ♯ ‘ ( 𝑋 𝐶 𝑁 ) ) = ( ♯ ‘ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ ( 𝑋 𝐶 𝑁 ) ) = ( ♯ ‘ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) ) |
12 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
13 |
12
|
clwwlknonfin |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ∈ Fin ) |
14 |
1
|
eleq1i |
⊢ ( 𝑉 ∈ Fin ↔ ( Vtx ‘ 𝐺 ) ∈ Fin ) |
15 |
3
|
eleq1i |
⊢ ( 𝐹 ∈ Fin ↔ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) ∈ Fin ) |
16 |
13 14 15
|
3imtr4i |
⊢ ( 𝑉 ∈ Fin → 𝐹 ∈ Fin ) |
17 |
16
|
adantr |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐹 ∈ Fin ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐹 ∈ Fin ) |
19 |
1
|
finrusgrfusgr |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) → 𝐺 ∈ FinUSGraph ) |
20 |
19
|
ancoms |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐺 ∈ FinUSGraph ) |
21 |
|
fusgrfis |
⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) |
22 |
20 21
|
syl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |
24 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
25 |
1 24
|
nbusgrfi |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( Edg ‘ 𝐺 ) ∈ Fin ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑋 ) ∈ Fin ) |
26 |
5 23 6 25
|
syl3anc |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( 𝐺 NeighbVtx 𝑋 ) ∈ Fin ) |
27 |
|
hashxp |
⊢ ( ( 𝐹 ∈ Fin ∧ ( 𝐺 NeighbVtx 𝑋 ) ∈ Fin ) → ( ♯ ‘ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) = ( ( ♯ ‘ 𝐹 ) · ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) ) ) |
28 |
18 26 27
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) = ( ( ♯ ‘ 𝐹 ) · ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) ) ) |
29 |
1
|
rusgrpropnb |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑥 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑥 ) ) = 𝐾 ) ) |
30 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝑋 ) ) |
31 |
30
|
fveqeq2d |
⊢ ( 𝑥 = 𝑋 → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑥 ) ) = 𝐾 ↔ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 𝐾 ) ) |
32 |
31
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑥 ) ) = 𝐾 → ( 𝑋 ∈ 𝑉 → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 𝐾 ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑥 ∈ 𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑥 ) ) = 𝐾 ) → ( 𝑋 ∈ 𝑉 → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 𝐾 ) ) |
34 |
29 33
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝑋 ∈ 𝑉 → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 𝐾 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝑋 ∈ 𝑉 → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 𝐾 ) ) |
36 |
35
|
com12 |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 𝐾 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 𝐾 ) ) |
38 |
37
|
impcom |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) = 𝐾 ) |
39 |
38
|
oveq2d |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ( ♯ ‘ 𝐹 ) · ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) ) = ( ( ♯ ‘ 𝐹 ) · 𝐾 ) ) |
40 |
|
hashcl |
⊢ ( 𝐹 ∈ Fin → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
41 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
42 |
18 40 41
|
3syl |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
43 |
20
|
adantr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐺 ∈ FinUSGraph ) |
44 |
|
simplr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐺 RegUSGraph 𝐾 ) |
45 |
|
ne0i |
⊢ ( 𝑋 ∈ 𝑉 → 𝑉 ≠ ∅ ) |
46 |
45
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑉 ≠ ∅ ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝑉 ≠ ∅ ) |
48 |
1
|
frusgrnn0 |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅ ) → 𝐾 ∈ ℕ0 ) |
49 |
43 44 47 48
|
syl3anc |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐾 ∈ ℕ0 ) |
50 |
49
|
nn0cnd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → 𝐾 ∈ ℂ ) |
51 |
42 50
|
mulcomd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ( ♯ ‘ 𝐹 ) · 𝐾 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |
52 |
39 51
|
eqtrd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ( ♯ ‘ 𝐹 ) · ( ♯ ‘ ( 𝐺 NeighbVtx 𝑋 ) ) ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |
53 |
11 28 52
|
3eqtrd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ ( 𝑋 𝐶 𝑁 ) ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |