Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
extwwlkfab.c |
⊢ 𝐶 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) |
3 |
|
extwwlkfab.f |
⊢ 𝐹 = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) ) |
4 |
|
numclwwlk.t |
⊢ 𝑇 = ( 𝑢 ∈ ( 𝑋 𝐶 𝑁 ) ↦ 〈 ( 𝑢 prefix ( 𝑁 − 2 ) ) , ( 𝑢 ‘ ( 𝑁 − 1 ) ) 〉 ) |
5 |
1 2 3 4
|
numclwwlk1lem2f1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑇 : ( 𝑋 𝐶 𝑁 ) –1-1→ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) |
6 |
1 2 3 4
|
numclwwlk1lem2fo |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑇 : ( 𝑋 𝐶 𝑁 ) –onto→ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) |
7 |
|
df-f1o |
⊢ ( 𝑇 : ( 𝑋 𝐶 𝑁 ) –1-1-onto→ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ↔ ( 𝑇 : ( 𝑋 𝐶 𝑁 ) –1-1→ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ∧ 𝑇 : ( 𝑋 𝐶 𝑁 ) –onto→ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) ) |
8 |
5 6 7
|
sylanbrc |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑇 : ( 𝑋 𝐶 𝑁 ) –1-1-onto→ ( 𝐹 × ( 𝐺 NeighbVtx 𝑋 ) ) ) |