Metamath Proof Explorer


Theorem numclwwlk1lem2fv

Description: Value of the function T . (Contributed by Alexander van der Vekens, 20-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v 𝑉 = ( Vtx ‘ 𝐺 )
extwwlkfab.c 𝐶 = ( 𝑣𝑉 , 𝑛 ∈ ( ℤ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } )
extwwlkfab.f 𝐹 = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) )
numclwwlk.t 𝑇 = ( 𝑢 ∈ ( 𝑋 𝐶 𝑁 ) ↦ ⟨ ( 𝑢 prefix ( 𝑁 − 2 ) ) , ( 𝑢 ‘ ( 𝑁 − 1 ) ) ⟩ )
Assertion numclwwlk1lem2fv ( 𝑊 ∈ ( 𝑋 𝐶 𝑁 ) → ( 𝑇𝑊 ) = ⟨ ( 𝑊 prefix ( 𝑁 − 2 ) ) , ( 𝑊 ‘ ( 𝑁 − 1 ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 extwwlkfab.v 𝑉 = ( Vtx ‘ 𝐺 )
2 extwwlkfab.c 𝐶 = ( 𝑣𝑉 , 𝑛 ∈ ( ℤ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } )
3 extwwlkfab.f 𝐹 = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁 − 2 ) )
4 numclwwlk.t 𝑇 = ( 𝑢 ∈ ( 𝑋 𝐶 𝑁 ) ↦ ⟨ ( 𝑢 prefix ( 𝑁 − 2 ) ) , ( 𝑢 ‘ ( 𝑁 − 1 ) ) ⟩ )
5 oveq1 ( 𝑢 = 𝑊 → ( 𝑢 prefix ( 𝑁 − 2 ) ) = ( 𝑊 prefix ( 𝑁 − 2 ) ) )
6 fveq1 ( 𝑢 = 𝑊 → ( 𝑢 ‘ ( 𝑁 − 1 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) )
7 5 6 opeq12d ( 𝑢 = 𝑊 → ⟨ ( 𝑢 prefix ( 𝑁 − 2 ) ) , ( 𝑢 ‘ ( 𝑁 − 1 ) ) ⟩ = ⟨ ( 𝑊 prefix ( 𝑁 − 2 ) ) , ( 𝑊 ‘ ( 𝑁 − 1 ) ) ⟩ )
8 opex ⟨ ( 𝑊 prefix ( 𝑁 − 2 ) ) , ( 𝑊 ‘ ( 𝑁 − 1 ) ) ⟩ ∈ V
9 7 4 8 fvmpt ( 𝑊 ∈ ( 𝑋 𝐶 𝑁 ) → ( 𝑇𝑊 ) = ⟨ ( 𝑊 prefix ( 𝑁 − 2 ) ) , ( 𝑊 ‘ ( 𝑁 − 1 ) ) ⟩ )