| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } )  | 
						
						
							| 3 | 
							
								
							 | 
							numclwwlk.h | 
							⊢ 𝐻  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							numclwwlkovq | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adant1 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  | 
						
						
							| 6 | 
							
								5
							 | 
							eleq2d | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  ( 𝑋 𝑄 𝑁 )  ↔  𝑊  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 0 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq1d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  ( 𝑊 ‘ 0 )  =  𝑋 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑊  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑊 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							neeq1d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( lastS ‘ 𝑤 )  ≠  𝑋  ↔  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							anbi12d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 )  ↔  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							elrab | 
							⊢ ( 𝑊  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							bitrdi | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  ( 𝑋 𝑄 𝑁 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  𝐺  ∈   FriendGraph  )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							wwlknp | 
							⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							peano2nn | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  +  1 )  ∈  ℕ )  | 
						
						
							| 19 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							jca | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							ex | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3adant3 | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) )  | 
						
						
							| 23 | 
							
								16 22
							 | 
							syl | 
							⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							lswlgt0cl | 
							⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  ( lastS ‘ 𝑊 )  ∈  𝑉 )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							syl6 | 
							⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑁  ∈  ℕ  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							com12 | 
							⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							imp | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( lastS ‘ 𝑊 )  ∈  𝑉 )  | 
						
						
							| 30 | 
							
								
							 | 
							eleq1 | 
							⊢ ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( ( 𝑊 ‘ 0 )  ∈  𝑉  ↔  𝑋  ∈  𝑉 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							biimprd | 
							⊢ ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( 𝑋  ∈  𝑉  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad2antrl | 
							⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑋  ∈  𝑉  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							com12 | 
							⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							imp | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 )  | 
						
						
							| 36 | 
							
								
							 | 
							neeq2 | 
							⊢ ( 𝑋  =  ( 𝑊 ‘ 0 )  →  ( ( lastS ‘ 𝑊 )  ≠  𝑋  ↔  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqcoms | 
							⊢ ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( ( lastS ‘ 𝑊 )  ≠  𝑋  ↔  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							biimpa | 
							⊢ ( ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 )  →  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantl | 
							⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantl | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 41 | 
							
								29 35 40
							 | 
							3jca | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( ( lastS ‘ 𝑊 )  ∈  𝑉  ∧  ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 42 | 
							
								1 15
							 | 
							frcond2 | 
							⊢ ( 𝐺  ∈   FriendGraph   →  ( ( ( lastS ‘ 𝑊 )  ∈  𝑉  ∧  ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  →  ∃! 𝑣  ∈  𝑉 ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) )  | 
						
						
							| 43 | 
							
								14 41 42
							 | 
							sylc | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ∃! 𝑣  ∈  𝑉 ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  𝑉 )  | 
						
						
							| 47 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 48 | 
							
								47
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 49 | 
							
								48
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 50 | 
							
								45 46 49
							 | 
							3jca | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑣  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  | 
						
						
							| 51 | 
							
								1 15
							 | 
							wwlksext2clwwlk | 
							⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑣  ∈  𝑉 )  →  ( ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							3adant3 | 
							⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑣  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							imp | 
							⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑣  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  | 
						
						
							| 54 | 
							
								50 53
							 | 
							sylan | 
							⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  | 
						
						
							| 55 | 
							
								1
							 | 
							wwlknbp | 
							⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							simp3d | 
							⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  Word  𝑉 )  | 
						
						
							| 57 | 
							
								56
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  𝑊  ∈  Word  𝑉 )  | 
						
						
							| 58 | 
							
								57
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  𝑊  ∈  Word  𝑉 )  | 
						
						
							| 59 | 
							
								46
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  𝑣  ∈  𝑉 )  | 
						
						
							| 60 | 
							
								
							 | 
							2z | 
							⊢ 2  ∈  ℤ  | 
						
						
							| 61 | 
							
								
							 | 
							nn0pzuz | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  ∈  ℤ )  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 62 | 
							
								47 60 61
							 | 
							sylancl | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  | 
						
						
							| 66 | 
							
								1 15
							 | 
							clwwlkext2edg | 
							⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑣  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  | 
						
						
							| 67 | 
							
								58 59 64 65 66
							 | 
							syl31anc | 
							⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  | 
						
						
							| 68 | 
							
								54 67
							 | 
							impbida | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) )  | 
						
						
							| 69 | 
							
								46 1
							 | 
							eleqtrdi | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 70 | 
							
								38
							 | 
							anim2i | 
							⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							simprd | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 73 | 
							
								
							 | 
							numclwwlk2lem1lem | 
							⊢ ( ( 𝑣  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 74 | 
							
								69 45 72 73
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑋  =  ( 𝑊 ‘ 0 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							eqcoms | 
							⊢ ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ad2antrl | 
							⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 79 | 
							
								74
							 | 
							simpld | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							neeq2d | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 81 | 
							
								78 80
							 | 
							anbi12d | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) )  ↔  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) )  | 
						
						
							| 82 | 
							
								74 81
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) )  | 
						
						
							| 83 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ )  | 
						
						
							| 84 | 
							
								
							 | 
							2cnd | 
							⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ )  | 
						
						
							| 85 | 
							
								83 84
							 | 
							pncand | 
							⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  2 )  −  2 )  =  𝑁 )  | 
						
						
							| 86 | 
							
								85
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  +  2 )  −  2 )  =  𝑁 )  | 
						
						
							| 87 | 
							
								86
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑁  +  2 )  −  2 )  =  𝑁 )  | 
						
						
							| 88 | 
							
								87
							 | 
							fveq2d | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  =  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							neeq1d | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							anbi2d | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) )  ↔  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) )  | 
						
						
							| 91 | 
							
								82 90
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							biantrud | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) )  | 
						
						
							| 93 | 
							
								62
							 | 
							anim2i | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							3adant1 | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) )  | 
						
						
							| 96 | 
							
								3
							 | 
							numclwwlkovh | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  =  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } )  | 
						
						
							| 97 | 
							
								95 96
							 | 
							syl | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  =  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } )  | 
						
						
							| 98 | 
							
								97
							 | 
							eleq2d | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } ) )  | 
						
						
							| 99 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( 𝑤 ‘ 0 )  =  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							eqeq1d | 
							⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋 ) )  | 
						
						
							| 101 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  =  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) ) )  | 
						
						
							| 102 | 
							
								101 99
							 | 
							neeq12d | 
							⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 )  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) )  | 
						
						
							| 103 | 
							
								100 102
							 | 
							anbi12d | 
							⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) )  ↔  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							elrab | 
							⊢ ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) }  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) )  | 
						
						
							| 105 | 
							
								98 104
							 | 
							bitr2di | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) )  ↔  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) )  | 
						
						
							| 106 | 
							
								68 92 105
							 | 
							3bitrd | 
							⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							reubidva | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( ∃! 𝑣  ∈  𝑉 ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ∃! 𝑣  ∈  𝑉 ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) )  | 
						
						
							| 108 | 
							
								43 107
							 | 
							mpbid | 
							⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ∃! 𝑣  ∈  𝑉 ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							ex | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ∃! 𝑣  ∈  𝑉 ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) )  | 
						
						
							| 110 | 
							
								13 109
							 | 
							sylbid | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  ( 𝑋 𝑄 𝑁 )  →  ∃! 𝑣  ∈  𝑉 ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) )  |