| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wwlknbp1 | 
							⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							s1cl | 
							⊢ ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  →  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nn0p1gt0 | 
							⊢ ( 𝑁  ∈  ℕ0  →  0  <  ( 𝑁  +  1 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  0  <  ( 𝑁  +  1 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  0  <  ( 𝑁  +  1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( 𝑁  +  1 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( 𝑁  +  1 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( 𝑁  +  1 ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							mpbird | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  0  <  ( ♯ ‘ 𝑊 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ccatfv0 | 
							⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 13 | 
							
								2 4 11 12
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							nn0cn | 
							⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ )  | 
						
						
							| 17 | 
							
								
							 | 
							pncan1 | 
							⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 )  | 
						
						
							| 19 | 
							
								18
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							eqtr2d | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  𝑁  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑁  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							fveq2d | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  =  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 24 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 25 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  0  <  ( 𝑁  +  1 ) )  | 
						
						
							| 26 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( 𝑁  +  1 ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							mpbird | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  0  <  ( ♯ ‘ 𝑊 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							hashneq0 | 
							⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  𝑊  ≠  ∅ ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							bicomd | 
							⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑊  ≠  ∅  ↔  0  <  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑊  ≠  ∅  ↔  0  <  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝑊  ≠  ∅  ↔  0  <  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 32 | 
							
								27 31
							 | 
							mpbird | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑊  ≠  ∅ )  | 
						
						
							| 33 | 
							
								
							 | 
							ccatval1lsw | 
							⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( lastS ‘ 𝑊 ) )  | 
						
						
							| 34 | 
							
								23 24 32 33
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( lastS ‘ 𝑊 ) )  | 
						
						
							| 35 | 
							
								22 34
							 | 
							eqtr2d | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( lastS ‘ 𝑊 )  =  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							neeq1d | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 )  ↔  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimpd | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							impr | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 39 | 
							
								13 38
							 | 
							jca | 
							⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							exp32 | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) ) )  | 
						
						
							| 41 | 
							
								1 40
							 | 
							syl | 
							⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							3imp21 | 
							⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) )  |