Step |
Hyp |
Ref |
Expression |
1 |
|
wwlknbp1 |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) |
2 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
3 |
|
s1cl |
⊢ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) → 〈“ 𝑋 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) |
4 |
3
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) → 〈“ 𝑋 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) |
5 |
|
nn0p1gt0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 < ( 𝑁 + 1 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → 0 < ( 𝑁 + 1 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) → 0 < ( 𝑁 + 1 ) ) |
8 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 0 < ( 𝑁 + 1 ) ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 0 < ( 𝑁 + 1 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 0 < ( 𝑁 + 1 ) ) ) |
11 |
7 10
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) → 0 < ( ♯ ‘ 𝑊 ) ) |
12 |
|
ccatfv0 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 〈“ 𝑋 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
13 |
2 4 11 12
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
14 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
16 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
17 |
|
pncan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
18 |
16 17
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
20 |
15 19
|
eqtr2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → 𝑁 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑁 = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
22 |
21
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) = ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
23 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
24 |
3
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → 〈“ 𝑋 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) |
25 |
6
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → 0 < ( 𝑁 + 1 ) ) |
26 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 0 < ( 𝑁 + 1 ) ) ) |
27 |
25 26
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) |
28 |
|
hashneq0 |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 𝑊 ≠ ∅ ) ) |
29 |
28
|
bicomd |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑊 ≠ ∅ ↔ 0 < ( ♯ ‘ 𝑊 ) ) ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ≠ ∅ ↔ 0 < ( ♯ ‘ 𝑊 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑊 ≠ ∅ ↔ 0 < ( ♯ ‘ 𝑊 ) ) ) |
32 |
27 31
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑊 ≠ ∅ ) |
33 |
|
ccatval1lsw |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 〈“ 𝑋 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( lastS ‘ 𝑊 ) ) |
34 |
23 24 32 33
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( lastS ‘ 𝑊 ) ) |
35 |
22 34
|
eqtr2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( lastS ‘ 𝑊 ) = ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ) |
36 |
35
|
neeq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ↔ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
37 |
36
|
biimpd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
38 |
37
|
impr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) |
39 |
13 38
|
jca |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
40 |
39
|
exp32 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ( ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) ) ) |
41 |
1 40
|
syl |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ( ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) ) ) |
42 |
41
|
3imp21 |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) |