| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } )  | 
						
						
							| 3 | 
							
								
							 | 
							numclwwlk.h | 
							⊢ 𝐻  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } )  | 
						
						
							| 4 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ∈  V )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( ℎ  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↦  ( ℎ  prefix  ( 𝑁  +  1 ) ) )  =  ( ℎ  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↦  ( ℎ  prefix  ( 𝑁  +  1 ) ) )  | 
						
						
							| 6 | 
							
								1 2 3 5
							 | 
							numclwlk2lem2f1o | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ℎ  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↦  ( ℎ  prefix  ( 𝑁  +  1 ) ) ) : ( 𝑋 𝐻 ( 𝑁  +  2 ) ) –1-1-onto→ ( 𝑋 𝑄 𝑁 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							hasheqf1od | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  =  ( ♯ ‘ ( 𝑋 𝑄 𝑁 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqcomd | 
							⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑋 𝑄 𝑁 ) )  =  ( ♯ ‘ ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) )  |