| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk3.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							fusgrusgr | 
							⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  USGraph )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  𝐺  ∈  USGraph )  | 
						
						
							| 4 | 
							
								1
							 | 
							clwwlknun | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ClWWalksN  𝐺 )  =  ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ClWWalksN  𝐺 )  =  ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) )  =  ( ♯ ‘ ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							fusgrvtxfi | 
							⊢ ( 𝐺  ∈  FinUSGraph  →  𝑉  ∈  Fin )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  𝑉  ∈  Fin )  | 
						
						
							| 9 | 
							
								1
							 | 
							clwwlknonfin | 
							⊢ ( 𝑉  ∈  Fin  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							syl | 
							⊢ ( 𝐺  ∈  FinUSGraph  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  𝑉 )  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin )  | 
						
						
							| 13 | 
							
								
							 | 
							clwwlknondisj | 
							⊢ Disj  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  Disj  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  | 
						
						
							| 15 | 
							
								8 12 14
							 | 
							hashiun | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  =  Σ 𝑥  ∈  𝑉 ( ♯ ‘ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) )  | 
						
						
							| 16 | 
							
								6 15
							 | 
							eqtrd | 
							⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) )  =  Σ 𝑥  ∈  𝑉 ( ♯ ‘ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) )  |