| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝑛  WWalksN  𝐺 )  =  ( 𝑁  WWalksN  𝐺 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( 𝑛  WWalksN  𝐺 )  =  ( 𝑁  WWalksN  𝐺 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑣  =  𝑋  →  ( ( 𝑤 ‘ 0 )  =  𝑣  ↔  ( 𝑤 ‘ 0 )  =  𝑋 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							neeq2 | 
							⊢ ( 𝑣  =  𝑋  →  ( ( lastS ‘ 𝑤 )  ≠  𝑣  ↔  ( lastS ‘ 𝑤 )  ≠  𝑋 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							anbi12d | 
							⊢ ( 𝑣  =  𝑋  →  ( ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							rabeqbidv | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  | 
						
						
							| 10 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V  | 
						
						
							| 11 | 
							
								10
							 | 
							rabex | 
							⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  ∈  V  | 
						
						
							| 12 | 
							
								9 2 11
							 | 
							ovmpoa | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  |