Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
numclwwlk.q |
⊢ 𝑄 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑣 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑣 ) } ) |
3 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 WWalksN 𝐺 ) = ( 𝑁 WWalksN 𝐺 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) → ( 𝑛 WWalksN 𝐺 ) = ( 𝑁 WWalksN 𝐺 ) ) |
5 |
|
eqeq2 |
⊢ ( 𝑣 = 𝑋 → ( ( 𝑤 ‘ 0 ) = 𝑣 ↔ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
6 |
|
neeq2 |
⊢ ( 𝑣 = 𝑋 → ( ( lastS ‘ 𝑤 ) ≠ 𝑣 ↔ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑣 = 𝑋 → ( ( ( 𝑤 ‘ 0 ) = 𝑣 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑣 ) ↔ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) → ( ( ( 𝑤 ‘ 0 ) = 𝑣 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑣 ) ↔ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ) ) |
9 |
4 8
|
rabeqbidv |
⊢ ( ( 𝑣 = 𝑋 ∧ 𝑛 = 𝑁 ) → { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑣 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑣 ) } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ) |
10 |
|
ovex |
⊢ ( 𝑁 WWalksN 𝐺 ) ∈ V |
11 |
10
|
rabex |
⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ∈ V |
12 |
9 2 11
|
ovmpoa |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑋 𝑄 𝑁 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ) |