| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							numclwwlkovq | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  | 
						
						
							| 5 | 
							
								4
							 | 
							fveq2d | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ ( 𝑋 𝑄 𝑁 ) )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) )  | 
						
						
							| 6 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  | 
						
						
							| 9 | 
							
								7 8 1
							 | 
							clwwlknclwwlkdifnum | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							sylanr2 | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) ) ) )  | 
						
						
							| 11 | 
							
								1
							 | 
							iswwlksnon | 
							⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) }  | 
						
						
							| 12 | 
							
								
							 | 
							wwlknlsw | 
							⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑤 ‘ 𝑁 )  =  ( lastS ‘ 𝑤 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  𝑋  =  ( 𝑤 ‘ 0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							biimpi | 
							⊢ ( ( 𝑤 ‘ 0 )  =  𝑋  →  𝑋  =  ( 𝑤 ‘ 0 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							eqeqan12d | 
							⊢ ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ↔  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							pm5.32da | 
							⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							biancomd | 
							⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 )  ↔  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rabbiia | 
							⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  | 
						
						
							| 19 | 
							
								11 18
							 | 
							eqtri | 
							⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  | 
						
						
							| 20 | 
							
								19
							 | 
							fveq2i | 
							⊢ ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } )  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) ) )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) ) )  | 
						
						
							| 23 | 
							
								10 22
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V  | 
						
						
							| 25 | 
							
								24
							 | 
							rabex | 
							⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  ∈  V  | 
						
						
							| 26 | 
							
								
							 | 
							clwwlkvbij | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							hasheqf1oi | 
							⊢ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  ∈  V  →  ( ∃ 𝑓 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) )  | 
						
						
							| 29 | 
							
								25 27 28
							 | 
							mpsyl | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) )  | 
						
						
							| 31 | 
							
								5 23 30
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ♯ ‘ ( 𝑋 𝑄 𝑁 ) )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) )  |