| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qnumdencoprm |
⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 3 |
|
qnumcl |
⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) |
| 4 |
|
qdencl |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) |
| 5 |
4
|
nnzd |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℤ ) |
| 6 |
|
zgcdsq |
⊢ ( ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ ( denom ‘ 𝐴 ) ∈ ℤ ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |
| 7 |
3 5 6
|
syl2anc |
⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |
| 8 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 9 |
8
|
a1i |
⊢ ( 𝐴 ∈ ℚ → ( 1 ↑ 2 ) = 1 ) |
| 10 |
2 7 9
|
3eqtr3d |
⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 11 |
|
qeqnumdivden |
⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 2 ) ) |
| 13 |
3
|
zcnd |
⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℂ ) |
| 14 |
4
|
nncnd |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℂ ) |
| 15 |
4
|
nnne0d |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ≠ 0 ) |
| 16 |
13 14 15
|
sqdivd |
⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) / ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |
| 17 |
12 16
|
eqtrd |
⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) / ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |
| 18 |
|
qsqcl |
⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) ∈ ℚ ) |
| 19 |
|
zsqcl |
⊢ ( ( numer ‘ 𝐴 ) ∈ ℤ → ( ( numer ‘ 𝐴 ) ↑ 2 ) ∈ ℤ ) |
| 20 |
3 19
|
syl |
⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) ↑ 2 ) ∈ ℤ ) |
| 21 |
4
|
nnsqcld |
⊢ ( 𝐴 ∈ ℚ → ( ( denom ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ) |
| 22 |
|
qnumdenbi |
⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℚ ∧ ( ( numer ‘ 𝐴 ) ↑ 2 ) ∈ ℤ ∧ ( ( denom ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ) → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) = 1 ∧ ( 𝐴 ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) / ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) ↔ ( ( numer ‘ ( 𝐴 ↑ 2 ) ) = ( ( numer ‘ 𝐴 ) ↑ 2 ) ∧ ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 23 |
18 20 21 22
|
syl3anc |
⊢ ( 𝐴 ∈ ℚ → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) = 1 ∧ ( 𝐴 ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) / ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) ↔ ( ( numer ‘ ( 𝐴 ↑ 2 ) ) = ( ( numer ‘ 𝐴 ) ↑ 2 ) ∧ ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 24 |
10 17 23
|
mpbi2and |
⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ ( 𝐴 ↑ 2 ) ) = ( ( numer ‘ 𝐴 ) ↑ 2 ) ∧ ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |