| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edglnl.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | edglnl.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | diffi | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ∖  { 𝑁 } )  ∈  Fin ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  ( 𝑉  ∖  { 𝑁 } )  ∈  Fin ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑉  ∖  { 𝑁 } )  ∈  Fin ) | 
						
							| 6 |  | dmfi | ⊢ ( 𝐸  ∈  Fin  →  dom  𝐸  ∈  Fin ) | 
						
							| 7 |  | rabfi | ⊢ ( dom  𝐸  ∈  Fin  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐸  ∈  Fin  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin ) | 
						
							| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin ) | 
						
							| 12 |  | notnotb | ⊢ ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ↔  ¬  ¬  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 13 |  | notnotb | ⊢ ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ↔  ¬  ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 14 |  | upgruhgr | ⊢ ( 𝐺  ∈  UPGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 15 | 2 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  𝐸 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝐺  ∈  UPGraph  →  Fun  𝐸 ) | 
						
							| 17 | 2 | iedgedg | ⊢ ( ( Fun  𝐸  ∧  𝑖  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 18 | 16 17 | sylan | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑖  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 19 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 20 | 1 19 | upgredg | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 ) )  →  ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 } ) | 
						
							| 21 | 18 20 | syldan | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑖  ∈  dom  𝐸 )  →  ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 } ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑖  ∈  dom  𝐸  →  ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 } ) ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑖  ∈  dom  𝐸  →  ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 } ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  →  ( 𝑖  ∈  dom  𝐸  →  ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 } ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  →  ( 𝑖  ∈  dom  𝐸  →  ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 } ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  →  ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 } ) | 
						
							| 27 |  | eldifsni | ⊢ ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  →  𝑣  ≠  𝑁 ) | 
						
							| 28 |  | eldifsni | ⊢ ( 𝑤  ∈  ( 𝑉  ∖  { 𝑁 } )  →  𝑤  ≠  𝑁 ) | 
						
							| 29 |  | 3elpr2eq | ⊢ ( ( ( 𝑁  ∈  { 𝑚 ,  𝑛 }  ∧  𝑣  ∈  { 𝑚 ,  𝑛 }  ∧  𝑤  ∈  { 𝑚 ,  𝑛 } )  ∧  ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 ) )  →  𝑣  =  𝑤 ) | 
						
							| 30 | 29 | expcom | ⊢ ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  →  ( ( 𝑁  ∈  { 𝑚 ,  𝑛 }  ∧  𝑣  ∈  { 𝑚 ,  𝑛 }  ∧  𝑤  ∈  { 𝑚 ,  𝑛 } )  →  𝑣  =  𝑤 ) ) | 
						
							| 31 | 30 | 3expd | ⊢ ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  →  ( 𝑁  ∈  { 𝑚 ,  𝑛 }  →  ( 𝑣  ∈  { 𝑚 ,  𝑛 }  →  ( 𝑤  ∈  { 𝑚 ,  𝑛 }  →  𝑣  =  𝑤 ) ) ) ) | 
						
							| 32 | 31 | com23 | ⊢ ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  →  ( 𝑣  ∈  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  { 𝑚 ,  𝑛 }  →  ( 𝑤  ∈  { 𝑚 ,  𝑛 }  →  𝑣  =  𝑤 ) ) ) ) | 
						
							| 33 | 32 | 3imp | ⊢ ( ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  ∧  𝑣  ∈  { 𝑚 ,  𝑛 }  ∧  𝑁  ∈  { 𝑚 ,  𝑛 } )  →  ( 𝑤  ∈  { 𝑚 ,  𝑛 }  →  𝑣  =  𝑤 ) ) | 
						
							| 34 | 33 | con3d | ⊢ ( ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  ∧  𝑣  ∈  { 𝑚 ,  𝑛 }  ∧  𝑁  ∈  { 𝑚 ,  𝑛 } )  →  ( ¬  𝑣  =  𝑤  →  ¬  𝑤  ∈  { 𝑚 ,  𝑛 } ) ) | 
						
							| 35 | 34 | 3exp | ⊢ ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  →  ( 𝑣  ∈  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  { 𝑚 ,  𝑛 }  →  ( ¬  𝑣  =  𝑤  →  ¬  𝑤  ∈  { 𝑚 ,  𝑛 } ) ) ) ) | 
						
							| 36 | 35 | com24 | ⊢ ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  →  ( ¬  𝑣  =  𝑤  →  ( 𝑁  ∈  { 𝑚 ,  𝑛 }  →  ( 𝑣  ∈  { 𝑚 ,  𝑛 }  →  ¬  𝑤  ∈  { 𝑚 ,  𝑛 } ) ) ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  ∧  ¬  𝑣  =  𝑤 )  →  ( 𝑁  ∈  { 𝑚 ,  𝑛 }  →  ( 𝑣  ∈  { 𝑚 ,  𝑛 }  →  ¬  𝑤  ∈  { 𝑚 ,  𝑛 } ) ) ) | 
						
							| 38 |  | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑁  ∈  { 𝑚 ,  𝑛 } ) ) | 
						
							| 39 |  | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑣  ∈  { 𝑚 ,  𝑛 } ) ) | 
						
							| 40 |  | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑤  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑤  ∈  { 𝑚 ,  𝑛 } ) ) | 
						
							| 41 | 40 | notbid | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 )  ↔  ¬  𝑤  ∈  { 𝑚 ,  𝑛 } ) ) | 
						
							| 42 | 39 41 | imbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ( 𝑣  ∈  { 𝑚 ,  𝑛 }  →  ¬  𝑤  ∈  { 𝑚 ,  𝑛 } ) ) ) | 
						
							| 43 | 38 42 | imbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) )  ↔  ( 𝑁  ∈  { 𝑚 ,  𝑛 }  →  ( 𝑣  ∈  { 𝑚 ,  𝑛 }  →  ¬  𝑤  ∈  { 𝑚 ,  𝑛 } ) ) ) ) | 
						
							| 44 | 37 43 | syl5ibrcom | ⊢ ( ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  ∧  ¬  𝑣  =  𝑤 )  →  ( ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  ∧  ¬  𝑣  =  𝑤 )  ∧  ( 𝑚  ∈  𝑉  ∧  𝑛  ∈  𝑉 ) )  →  ( ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 46 | 45 | rexlimdvva | ⊢ ( ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  ∧  ¬  𝑣  =  𝑤 )  →  ( ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( ( 𝑣  ≠  𝑁  ∧  𝑤  ≠  𝑁 )  →  ( ¬  𝑣  =  𝑤  →  ( ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 48 | 27 28 47 | syl2an | ⊢ ( ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ( ¬  𝑣  =  𝑤  →  ( ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  →  ( ¬  𝑣  =  𝑤  →  ( ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 50 | 49 | imp | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  →  ( ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ∃ 𝑚  ∈  𝑉 ∃ 𝑛  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑚 ,  𝑛 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 52 | 26 51 | mpd | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  ∧  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) )  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 54 | 13 53 | biimtrrid | ⊢ ( ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  ∧  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) )  →  ( ¬  ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 )  →  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 55 | 54 | orrd | ⊢ ( ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  ∧  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) )  →  ( ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 56 | 55 | ex | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 57 | 12 56 | biimtrrid | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ¬  ¬  𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 58 | 57 | orrd | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ¬  𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ( ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 59 |  | anandi | ⊢ ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) )  ↔  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 60 | 59 | bicomi | ⊢ ( ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) )  ↔  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 61 | 60 | notbii | ⊢ ( ¬  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) )  ↔  ¬  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 62 |  | ianor | ⊢ ( ¬  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) )  ↔  ( ¬  𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 63 |  | ianor | ⊢ ( ¬  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ( ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 64 | 63 | orbi2i | ⊢ ( ( ¬  𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) )  ↔  ( ¬  𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ( ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 65 | 61 62 64 | 3bitri | ⊢ ( ¬  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) )  ↔  ( ¬  𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ( ¬  𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ∨  ¬  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 66 | 58 65 | sylibr | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  ∧  𝑖  ∈  dom  𝐸 )  →  ¬  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  →  ∀ 𝑖  ∈  dom  𝐸 ¬  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 68 |  | inrab | ⊢ ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  { 𝑖  ∈  dom  𝐸  ∣  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) } | 
						
							| 69 | 68 | eqeq1i | ⊢ ( ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  ∅  ↔  { 𝑖  ∈  dom  𝐸  ∣  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) }  =  ∅ ) | 
						
							| 70 |  | rabeq0 | ⊢ ( { 𝑖  ∈  dom  𝐸  ∣  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) }  =  ∅  ↔  ∀ 𝑖  ∈  dom  𝐸 ¬  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 71 | 69 70 | bitri | ⊢ ( ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  ∅  ↔  ∀ 𝑖  ∈  dom  𝐸 ¬  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 72 | 67 71 | sylibr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  ∧  ¬  𝑣  =  𝑤 )  →  ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  ∅ ) | 
						
							| 73 | 72 | ex | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  →  ( ¬  𝑣  =  𝑤  →  ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  ∅ ) ) | 
						
							| 74 | 73 | orrd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ∧  𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ) )  →  ( 𝑣  =  𝑤  ∨  ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  ∅ ) ) | 
						
							| 75 | 74 | ralrimivva | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑣  =  𝑤  ∨  ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  ∅ ) ) | 
						
							| 76 |  | eleq1w | ⊢ ( 𝑣  =  𝑤  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 77 | 76 | anbi2d | ⊢ ( 𝑣  =  𝑤  →  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 78 | 77 | rabbidv | ⊢ ( 𝑣  =  𝑤  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  =  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 79 | 78 | disjor | ⊢ ( Disj  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ↔  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑣  =  𝑤  ∨  ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑤  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  ∅ ) ) | 
						
							| 80 | 75 79 | sylibr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  Disj  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 81 | 5 11 80 | hashiun | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) ) | 
						
							| 82 | 81 | eqcomd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  =  ( ♯ ‘ ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ( ♯ ‘ ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) | 
						
							| 84 | 11 | ralrimiva | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin ) | 
						
							| 85 |  | iunfi | ⊢ ( ( ( 𝑉  ∖  { 𝑁 } )  ∈  Fin  ∧  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin )  →  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin ) | 
						
							| 86 | 5 84 85 | syl2anc | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin ) | 
						
							| 87 |  | rabfi | ⊢ ( dom  𝐸  ∈  Fin  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  ∈  Fin ) | 
						
							| 88 | 6 87 | syl | ⊢ ( 𝐸  ∈  Fin  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  ∈  Fin ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  ∈  Fin ) | 
						
							| 90 | 89 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  ∈  Fin ) | 
						
							| 91 |  | fveqeq2 | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐸 ‘ 𝑖 )  =  { 𝑁 }  ↔  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 92 | 91 | elrab | ⊢ ( 𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  ↔  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 93 |  | eldifn | ⊢ ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  →  ¬  𝑣  ∈  { 𝑁 } ) | 
						
							| 94 |  | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑗 )  =  { 𝑁 }  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑗 )  ↔  𝑣  ∈  { 𝑁 } ) ) | 
						
							| 95 | 94 | notbid | ⊢ ( ( 𝐸 ‘ 𝑗 )  =  { 𝑁 }  →  ( ¬  𝑣  ∈  ( 𝐸 ‘ 𝑗 )  ↔  ¬  𝑣  ∈  { 𝑁 } ) ) | 
						
							| 96 | 93 95 | imbitrrid | ⊢ ( ( 𝐸 ‘ 𝑗 )  =  { 𝑁 }  →  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  →  ¬  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } )  →  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  →  ¬  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } ) )  →  ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  →  ¬  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 99 | 98 | imp | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } ) )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ¬  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 100 | 99 | intnand | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } ) )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ¬  ( 𝑁  ∈  ( 𝐸 ‘ 𝑗 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 101 | 100 | intnand | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } ) )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ¬  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑗 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) ) | 
						
							| 102 | 101 | ralrimiva | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } ) )  →  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ¬  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑗 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) ) | 
						
							| 103 |  | eliun | ⊢ ( 𝑗  ∈  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ↔  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 104 | 103 | notbii | ⊢ ( ¬  𝑗  ∈  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ↔  ¬  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 105 |  | ralnex | ⊢ ( ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ¬  𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ↔  ¬  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 106 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 107 | 106 | eleq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑁  ∈  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 108 | 106 | eleq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 109 | 107 108 | anbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ( 𝑁  ∈  ( 𝐸 ‘ 𝑗 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) ) | 
						
							| 110 | 109 | elrab | ⊢ ( 𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ↔  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑗 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) ) | 
						
							| 111 | 110 | notbii | ⊢ ( ¬  𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ↔  ¬  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑗 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) ) | 
						
							| 112 | 111 | ralbii | ⊢ ( ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ¬  𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ↔  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ¬  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑗 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) ) | 
						
							| 113 | 104 105 112 | 3bitr2i | ⊢ ( ¬  𝑗  ∈  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ↔  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ¬  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑗 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑗 ) ) ) ) | 
						
							| 114 | 102 113 | sylibr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } ) )  →  ¬  𝑗  ∈  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 115 | 114 | ex | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( ( 𝑗  ∈  dom  𝐸  ∧  ( 𝐸 ‘ 𝑗 )  =  { 𝑁 } )  →  ¬  𝑗  ∈  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) ) | 
						
							| 116 | 92 115 | biimtrid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( 𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  →  ¬  𝑗  ∈  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) ) | 
						
							| 117 | 116 | ralrimiv | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ∀ 𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ¬  𝑗  ∈  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 118 |  | disjr | ⊢ ( ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  ∅  ↔  ∀ 𝑗  ∈  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ¬  𝑗  ∈  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 119 | 117 118 | sylibr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  ∅ ) | 
						
							| 120 |  | hashun | ⊢ ( ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∈  Fin  ∧  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  ∈  Fin  ∧  ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∩  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  ∅ )  →  ( ♯ ‘ ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ( ♯ ‘ ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) | 
						
							| 121 | 86 90 119 120 | syl3anc | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ( ♯ ‘ ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) | 
						
							| 122 | 1 2 | edglnl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  →  ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) | 
						
							| 123 | 122 | 3adant2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) | 
						
							| 124 | 123 | fveq2d | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) | 
						
							| 125 | 83 121 124 | 3eqtr2d | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) |