Step |
Hyp |
Ref |
Expression |
1 |
|
edglnl.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
edglnl.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
diffi |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
4 |
3
|
adantr |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
6 |
|
dmfi |
⊢ ( 𝐸 ∈ Fin → dom 𝐸 ∈ Fin ) |
7 |
|
rabfi |
⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
8 |
6 7
|
syl |
⊢ ( 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
9 |
8
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
12 |
|
notnotb |
⊢ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ ¬ ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) |
13 |
|
notnotb |
⊢ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ ¬ ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) |
14 |
|
upgruhgr |
⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) |
15 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
16 |
14 15
|
syl |
⊢ ( 𝐺 ∈ UPGraph → Fun 𝐸 ) |
17 |
2
|
iedgedg |
⊢ ( ( Fun 𝐸 ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) |
19 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
20 |
1 19
|
upgredg |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝐸 ‘ 𝑖 ) ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) |
21 |
18 20
|
syldan |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑖 ∈ dom 𝐸 ) → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) |
22 |
21
|
ex |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑖 ∈ dom 𝐸 → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑖 ∈ dom 𝐸 → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( 𝑖 ∈ dom 𝐸 → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) → ( 𝑖 ∈ dom 𝐸 → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) ) |
26 |
25
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } ) |
27 |
|
eldifsni |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ≠ 𝑁 ) |
28 |
|
eldifsni |
⊢ ( 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑤 ≠ 𝑁 ) |
29 |
|
3elpr2eq |
⊢ ( ( ( 𝑁 ∈ { 𝑚 , 𝑛 } ∧ 𝑣 ∈ { 𝑚 , 𝑛 } ∧ 𝑤 ∈ { 𝑚 , 𝑛 } ) ∧ ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ) → 𝑣 = 𝑤 ) |
30 |
29
|
expcom |
⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( ( 𝑁 ∈ { 𝑚 , 𝑛 } ∧ 𝑣 ∈ { 𝑚 , 𝑛 } ∧ 𝑤 ∈ { 𝑚 , 𝑛 } ) → 𝑣 = 𝑤 ) ) |
31 |
30
|
3expd |
⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ( 𝑤 ∈ { 𝑚 , 𝑛 } → 𝑣 = 𝑤 ) ) ) ) |
32 |
31
|
com23 |
⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑤 ∈ { 𝑚 , 𝑛 } → 𝑣 = 𝑤 ) ) ) ) |
33 |
32
|
3imp |
⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ 𝑣 ∈ { 𝑚 , 𝑛 } ∧ 𝑁 ∈ { 𝑚 , 𝑛 } ) → ( 𝑤 ∈ { 𝑚 , 𝑛 } → 𝑣 = 𝑤 ) ) |
34 |
33
|
con3d |
⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ 𝑣 ∈ { 𝑚 , 𝑛 } ∧ 𝑁 ∈ { 𝑚 , 𝑛 } ) → ( ¬ 𝑣 = 𝑤 → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) |
35 |
34
|
3exp |
⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( ¬ 𝑣 = 𝑤 → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) ) |
36 |
35
|
com24 |
⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( ¬ 𝑣 = 𝑤 → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) ) |
37 |
36
|
imp |
⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ ¬ 𝑣 = 𝑤 ) → ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) |
38 |
|
eleq2 |
⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∈ { 𝑚 , 𝑛 } ) ) |
39 |
|
eleq2 |
⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑣 ∈ { 𝑚 , 𝑛 } ) ) |
40 |
|
eleq2 |
⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) |
41 |
40
|
notbid |
⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ↔ ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) |
42 |
39 41
|
imbi12d |
⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑣 ∈ { 𝑚 , 𝑛 } → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) |
43 |
38 42
|
imbi12d |
⊢ ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( 𝑁 ∈ { 𝑚 , 𝑛 } → ( 𝑣 ∈ { 𝑚 , 𝑛 } → ¬ 𝑤 ∈ { 𝑚 , 𝑛 } ) ) ) ) |
44 |
37 43
|
syl5ibrcom |
⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ ¬ 𝑣 = 𝑤 ) → ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ ¬ 𝑣 = 𝑤 ) ∧ ( 𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
46 |
45
|
rexlimdvva |
⊢ ( ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) ∧ ¬ 𝑣 = 𝑤 ) → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
47 |
46
|
ex |
⊢ ( ( 𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁 ) → ( ¬ 𝑣 = 𝑤 → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
48 |
27 28 47
|
syl2an |
⊢ ( ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ¬ 𝑣 = 𝑤 → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
49 |
48
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( ¬ 𝑣 = 𝑤 → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
50 |
49
|
imp |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
51 |
50
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ∃ 𝑚 ∈ 𝑉 ∃ 𝑛 ∈ 𝑉 ( 𝐸 ‘ 𝑖 ) = { 𝑚 , 𝑛 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
52 |
26 51
|
mpd |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
53 |
52
|
imp |
⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
54 |
13 53
|
syl5bir |
⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) → ( ¬ ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) → ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
55 |
54
|
orrd |
⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) → ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
56 |
55
|
ex |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
57 |
12 56
|
syl5bir |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ¬ ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) → ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
58 |
57
|
orrd |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
59 |
|
anandi |
⊢ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
60 |
59
|
bicomi |
⊢ ( ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
61 |
60
|
notbii |
⊢ ( ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ¬ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
62 |
|
ianor |
⊢ ( ¬ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
63 |
|
ianor |
⊢ ( ¬ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
64 |
63
|
orbi2i |
⊢ ( ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
65 |
61 62 64
|
3bitri |
⊢ ( ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( ¬ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ∨ ¬ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
66 |
58 65
|
sylibr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) ∧ 𝑖 ∈ dom 𝐸 ) → ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
67 |
66
|
ralrimiva |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) → ∀ 𝑖 ∈ dom 𝐸 ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
68 |
|
inrab |
⊢ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = { 𝑖 ∈ dom 𝐸 ∣ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) } |
69 |
68
|
eqeq1i |
⊢ ( ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ↔ { 𝑖 ∈ dom 𝐸 ∣ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) } = ∅ ) |
70 |
|
rabeq0 |
⊢ ( { 𝑖 ∈ dom 𝐸 ∣ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) } = ∅ ↔ ∀ 𝑖 ∈ dom 𝐸 ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
71 |
69 70
|
bitri |
⊢ ( ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ↔ ∀ 𝑖 ∈ dom 𝐸 ¬ ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
72 |
67 71
|
sylibr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) ∧ ¬ 𝑣 = 𝑤 ) → ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) |
73 |
72
|
ex |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( ¬ 𝑣 = 𝑤 → ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) ) |
74 |
73
|
orrd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( 𝑣 = 𝑤 ∨ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) ) |
75 |
74
|
ralrimivva |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑣 = 𝑤 ∨ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) ) |
76 |
|
eleq1w |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
77 |
76
|
anbi2d |
⊢ ( 𝑣 = 𝑤 → ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) ) ) |
78 |
77
|
rabbidv |
⊢ ( 𝑣 = 𝑤 → { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } = { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
79 |
78
|
disjor |
⊢ ( Disj 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑁 } ) ( 𝑣 = 𝑤 ∨ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑤 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ∅ ) ) |
80 |
75 79
|
sylibr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → Disj 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
81 |
5 11 80
|
hashiun |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
82 |
81
|
eqcomd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) = ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
83 |
82
|
oveq1d |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) |
84 |
11
|
ralrimiva |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
85 |
|
iunfi |
⊢ ( ( ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ∧ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) → ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
86 |
5 84 85
|
syl2anc |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ) |
87 |
|
rabfi |
⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
88 |
6 87
|
syl |
⊢ ( 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
89 |
88
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
90 |
89
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
91 |
|
fveqeq2 |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐸 ‘ 𝑖 ) = { 𝑁 } ↔ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) |
92 |
91
|
elrab |
⊢ ( 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ↔ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) |
93 |
|
eldifn |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ 𝑣 ∈ { 𝑁 } ) |
94 |
|
eleq2 |
⊢ ( ( 𝐸 ‘ 𝑗 ) = { 𝑁 } → ( 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ↔ 𝑣 ∈ { 𝑁 } ) ) |
95 |
94
|
notbid |
⊢ ( ( 𝐸 ‘ 𝑗 ) = { 𝑁 } → ( ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ↔ ¬ 𝑣 ∈ { 𝑁 } ) ) |
96 |
93 95
|
syl5ibr |
⊢ ( ( 𝐸 ‘ 𝑗 ) = { 𝑁 } → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
97 |
96
|
adantl |
⊢ ( ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
98 |
97
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
99 |
98
|
imp |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ¬ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) |
100 |
99
|
intnand |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ¬ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
101 |
100
|
intnand |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
102 |
101
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
103 |
|
eliun |
⊢ ( 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
104 |
103
|
notbii |
⊢ ( ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ¬ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
105 |
|
ralnex |
⊢ ( ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ¬ ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
106 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑗 ) ) |
107 |
106
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
108 |
106
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) |
109 |
107 108
|
anbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) ↔ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
110 |
109
|
elrab |
⊢ ( 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
111 |
110
|
notbii |
⊢ ( ¬ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
112 |
111
|
ralbii |
⊢ ( ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
113 |
104 105 112
|
3bitr2i |
⊢ ( ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ¬ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑗 ) ) ) ) |
114 |
102 113
|
sylibr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) ) → ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
115 |
114
|
ex |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐸 ∧ ( 𝐸 ‘ 𝑗 ) = { 𝑁 } ) → ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
116 |
92 115
|
syl5bi |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } → ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) ) |
117 |
116
|
ralrimiv |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
118 |
|
disjr |
⊢ ( ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = ∅ ↔ ∀ 𝑗 ∈ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ¬ 𝑗 ∈ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) |
119 |
117 118
|
sylibr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = ∅ ) |
120 |
|
hashun |
⊢ ( ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∈ Fin ∧ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ∧ ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∩ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = ∅ ) → ( ♯ ‘ ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) |
121 |
86 90 119 120
|
syl3anc |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) |
122 |
1 2
|
edglnl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
123 |
122
|
3adant2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
124 |
123
|
fveq2d |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ ( ∪ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ∪ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |
125 |
83 121 124
|
3eqtr2d |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑁 ∈ 𝑉 ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ∧ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |