Metamath Proof Explorer


Theorem numexp1

Description: Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypothesis numexp.1 𝐴 ∈ ℕ0
Assertion numexp1 ( 𝐴 ↑ 1 ) = 𝐴

Proof

Step Hyp Ref Expression
1 numexp.1 𝐴 ∈ ℕ0
2 1 nn0cni 𝐴 ∈ ℂ
3 exp1 ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 )
4 2 3 ax-mp ( 𝐴 ↑ 1 ) = 𝐴