Metamath Proof Explorer


Theorem numexp2x

Description: Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses numexp.1 𝐴 ∈ ℕ0
numexpp1.2 𝑀 ∈ ℕ0
numexp2x.3 ( 2 · 𝑀 ) = 𝑁
numexp2x.4 ( 𝐴𝑀 ) = 𝐷
numexp2x.5 ( 𝐷 · 𝐷 ) = 𝐶
Assertion numexp2x ( 𝐴𝑁 ) = 𝐶

Proof

Step Hyp Ref Expression
1 numexp.1 𝐴 ∈ ℕ0
2 numexpp1.2 𝑀 ∈ ℕ0
3 numexp2x.3 ( 2 · 𝑀 ) = 𝑁
4 numexp2x.4 ( 𝐴𝑀 ) = 𝐷
5 numexp2x.5 ( 𝐷 · 𝐷 ) = 𝐶
6 2 nn0cni 𝑀 ∈ ℂ
7 6 2timesi ( 2 · 𝑀 ) = ( 𝑀 + 𝑀 )
8 3 7 eqtr3i 𝑁 = ( 𝑀 + 𝑀 )
9 8 oveq2i ( 𝐴𝑁 ) = ( 𝐴 ↑ ( 𝑀 + 𝑀 ) )
10 1 nn0cni 𝐴 ∈ ℂ
11 expadd ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑀 ) ) = ( ( 𝐴𝑀 ) · ( 𝐴𝑀 ) ) )
12 10 2 2 11 mp3an ( 𝐴 ↑ ( 𝑀 + 𝑀 ) ) = ( ( 𝐴𝑀 ) · ( 𝐴𝑀 ) )
13 9 12 eqtri ( 𝐴𝑁 ) = ( ( 𝐴𝑀 ) · ( 𝐴𝑀 ) )
14 4 4 oveq12i ( ( 𝐴𝑀 ) · ( 𝐴𝑀 ) ) = ( 𝐷 · 𝐷 )
15 14 5 eqtri ( ( 𝐴𝑀 ) · ( 𝐴𝑀 ) ) = 𝐶
16 13 15 eqtri ( 𝐴𝑁 ) = 𝐶