| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numexp.1 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | numexpp1.2 | ⊢ 𝑀  ∈  ℕ0 | 
						
							| 3 |  | numexp2x.3 | ⊢ ( 2  ·  𝑀 )  =  𝑁 | 
						
							| 4 |  | numexp2x.4 | ⊢ ( 𝐴 ↑ 𝑀 )  =  𝐷 | 
						
							| 5 |  | numexp2x.5 | ⊢ ( 𝐷  ·  𝐷 )  =  𝐶 | 
						
							| 6 | 2 | nn0cni | ⊢ 𝑀  ∈  ℂ | 
						
							| 7 | 6 | 2timesi | ⊢ ( 2  ·  𝑀 )  =  ( 𝑀  +  𝑀 ) | 
						
							| 8 | 3 7 | eqtr3i | ⊢ 𝑁  =  ( 𝑀  +  𝑀 ) | 
						
							| 9 | 8 | oveq2i | ⊢ ( 𝐴 ↑ 𝑁 )  =  ( 𝐴 ↑ ( 𝑀  +  𝑀 ) ) | 
						
							| 10 | 1 | nn0cni | ⊢ 𝐴  ∈  ℂ | 
						
							| 11 |  | expadd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑀  +  𝑀 ) )  =  ( ( 𝐴 ↑ 𝑀 )  ·  ( 𝐴 ↑ 𝑀 ) ) ) | 
						
							| 12 | 10 2 2 11 | mp3an | ⊢ ( 𝐴 ↑ ( 𝑀  +  𝑀 ) )  =  ( ( 𝐴 ↑ 𝑀 )  ·  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 13 | 9 12 | eqtri | ⊢ ( 𝐴 ↑ 𝑁 )  =  ( ( 𝐴 ↑ 𝑀 )  ·  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 14 | 4 4 | oveq12i | ⊢ ( ( 𝐴 ↑ 𝑀 )  ·  ( 𝐴 ↑ 𝑀 ) )  =  ( 𝐷  ·  𝐷 ) | 
						
							| 15 | 14 5 | eqtri | ⊢ ( ( 𝐴 ↑ 𝑀 )  ·  ( 𝐴 ↑ 𝑀 ) )  =  𝐶 | 
						
							| 16 | 13 15 | eqtri | ⊢ ( 𝐴 ↑ 𝑁 )  =  𝐶 |