Description: Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numexp.1 | ⊢ 𝐴 ∈ ℕ0 | |
| numexpp1.2 | ⊢ 𝑀 ∈ ℕ0 | ||
| numexpp1.3 | ⊢ ( 𝑀 + 1 ) = 𝑁 | ||
| numexpp1.4 | ⊢ ( ( 𝐴 ↑ 𝑀 ) · 𝐴 ) = 𝐶 | ||
| Assertion | numexpp1 | ⊢ ( 𝐴 ↑ 𝑁 ) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numexp.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | numexpp1.2 | ⊢ 𝑀 ∈ ℕ0 | |
| 3 | numexpp1.3 | ⊢ ( 𝑀 + 1 ) = 𝑁 | |
| 4 | numexpp1.4 | ⊢ ( ( 𝐴 ↑ 𝑀 ) · 𝐴 ) = 𝐶 | |
| 5 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 6 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 1 ) ) = ( ( 𝐴 ↑ 𝑀 ) · 𝐴 ) ) | |
| 7 | 5 2 6 | mp2an | ⊢ ( 𝐴 ↑ ( 𝑀 + 1 ) ) = ( ( 𝐴 ↑ 𝑀 ) · 𝐴 ) |
| 8 | 3 | oveq2i | ⊢ ( 𝐴 ↑ ( 𝑀 + 1 ) ) = ( 𝐴 ↑ 𝑁 ) |
| 9 | 7 8 4 | 3eqtr3i | ⊢ ( 𝐴 ↑ 𝑁 ) = 𝐶 |