Metamath Proof Explorer


Theorem numexpp1

Description: Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses numexp.1 𝐴 ∈ ℕ0
numexpp1.2 𝑀 ∈ ℕ0
numexpp1.3 ( 𝑀 + 1 ) = 𝑁
numexpp1.4 ( ( 𝐴𝑀 ) · 𝐴 ) = 𝐶
Assertion numexpp1 ( 𝐴𝑁 ) = 𝐶

Proof

Step Hyp Ref Expression
1 numexp.1 𝐴 ∈ ℕ0
2 numexpp1.2 𝑀 ∈ ℕ0
3 numexpp1.3 ( 𝑀 + 1 ) = 𝑁
4 numexpp1.4 ( ( 𝐴𝑀 ) · 𝐴 ) = 𝐶
5 1 nn0cni 𝐴 ∈ ℂ
6 expp1 ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 1 ) ) = ( ( 𝐴𝑀 ) · 𝐴 ) )
7 5 2 6 mp2an ( 𝐴 ↑ ( 𝑀 + 1 ) ) = ( ( 𝐴𝑀 ) · 𝐴 )
8 3 oveq2i ( 𝐴 ↑ ( 𝑀 + 1 ) ) = ( 𝐴𝑁 )
9 7 8 4 3eqtr3i ( 𝐴𝑁 ) = 𝐶