Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal integers (equal higher places).  (Contributed by Mario Carneiro, 18-Feb-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | numlt.1 | ⊢ 𝑇  ∈  ℕ | 
					
						|  |  | numlt.2 | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | numlt.3 | ⊢ 𝐵  ∈  ℕ0 | 
					
						|  |  | numlt.4 | ⊢ 𝐶  ∈  ℕ | 
					
						|  |  | numlt.5 | ⊢ 𝐵  <  𝐶 | 
				
					|  | Assertion | numlt | ⊢  ( ( 𝑇  ·  𝐴 )  +  𝐵 )  <  ( ( 𝑇  ·  𝐴 )  +  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numlt.1 | ⊢ 𝑇  ∈  ℕ | 
						
							| 2 |  | numlt.2 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 3 |  | numlt.3 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 4 |  | numlt.4 | ⊢ 𝐶  ∈  ℕ | 
						
							| 5 |  | numlt.5 | ⊢ 𝐵  <  𝐶 | 
						
							| 6 | 3 | nn0rei | ⊢ 𝐵  ∈  ℝ | 
						
							| 7 | 4 | nnrei | ⊢ 𝐶  ∈  ℝ | 
						
							| 8 | 1 | nnnn0i | ⊢ 𝑇  ∈  ℕ0 | 
						
							| 9 | 8 2 | nn0mulcli | ⊢ ( 𝑇  ·  𝐴 )  ∈  ℕ0 | 
						
							| 10 | 9 | nn0rei | ⊢ ( 𝑇  ·  𝐴 )  ∈  ℝ | 
						
							| 11 | 6 7 10 | ltadd2i | ⊢ ( 𝐵  <  𝐶  ↔  ( ( 𝑇  ·  𝐴 )  +  𝐵 )  <  ( ( 𝑇  ·  𝐴 )  +  𝐶 ) ) | 
						
							| 12 | 5 11 | mpbi | ⊢ ( ( 𝑇  ·  𝐴 )  +  𝐵 )  <  ( ( 𝑇  ·  𝐴 )  +  𝐶 ) |