Metamath Proof Explorer


Theorem numlti

Description: Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numlti.1 𝑇 ∈ ℕ
numlti.2 𝐴 ∈ ℕ
numlti.3 𝐵 ∈ ℕ0
numlti.4 𝐶 ∈ ℕ0
numlti.5 𝐶 < 𝑇
Assertion numlti 𝐶 < ( ( 𝑇 · 𝐴 ) + 𝐵 )

Proof

Step Hyp Ref Expression
1 numlti.1 𝑇 ∈ ℕ
2 numlti.2 𝐴 ∈ ℕ
3 numlti.3 𝐵 ∈ ℕ0
4 numlti.4 𝐶 ∈ ℕ0
5 numlti.5 𝐶 < 𝑇
6 1 nnnn0i 𝑇 ∈ ℕ0
7 6 4 num0h 𝐶 = ( ( 𝑇 · 0 ) + 𝐶 )
8 0nn0 0 ∈ ℕ0
9 2 nnnn0i 𝐴 ∈ ℕ0
10 2 nngt0i 0 < 𝐴
11 1 8 9 4 3 5 10 numltc ( ( 𝑇 · 0 ) + 𝐶 ) < ( ( 𝑇 · 𝐴 ) + 𝐵 )
12 7 11 eqbrtri 𝐶 < ( ( 𝑇 · 𝐴 ) + 𝐵 )