Metamath Proof Explorer
		
		
		
		Description:  Comparing a digit to a decimal integer.  (Contributed by Mario Carneiro, 18-Feb-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | numlti.1 | ⊢ 𝑇  ∈  ℕ | 
					
						|  |  | numlti.2 | ⊢ 𝐴  ∈  ℕ | 
					
						|  |  | numlti.3 | ⊢ 𝐵  ∈  ℕ0 | 
					
						|  |  | numlti.4 | ⊢ 𝐶  ∈  ℕ0 | 
					
						|  |  | numlti.5 | ⊢ 𝐶  <  𝑇 | 
				
					|  | Assertion | numlti | ⊢  𝐶  <  ( ( 𝑇  ·  𝐴 )  +  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numlti.1 | ⊢ 𝑇  ∈  ℕ | 
						
							| 2 |  | numlti.2 | ⊢ 𝐴  ∈  ℕ | 
						
							| 3 |  | numlti.3 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 4 |  | numlti.4 | ⊢ 𝐶  ∈  ℕ0 | 
						
							| 5 |  | numlti.5 | ⊢ 𝐶  <  𝑇 | 
						
							| 6 | 1 | nnnn0i | ⊢ 𝑇  ∈  ℕ0 | 
						
							| 7 | 6 4 | num0h | ⊢ 𝐶  =  ( ( 𝑇  ·  0 )  +  𝐶 ) | 
						
							| 8 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 9 | 2 | nnnn0i | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 10 | 2 | nngt0i | ⊢ 0  <  𝐴 | 
						
							| 11 | 1 8 9 4 3 5 10 | numltc | ⊢ ( ( 𝑇  ·  0 )  +  𝐶 )  <  ( ( 𝑇  ·  𝐴 )  +  𝐵 ) | 
						
							| 12 | 7 11 | eqbrtri | ⊢ 𝐶  <  ( ( 𝑇  ·  𝐴 )  +  𝐵 ) |