Metamath Proof Explorer
Description: Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014)
|
|
Ref |
Expression |
|
Hypotheses |
numlti.1 |
⊢ 𝑇 ∈ ℕ |
|
|
numlti.2 |
⊢ 𝐴 ∈ ℕ |
|
|
numlti.3 |
⊢ 𝐵 ∈ ℕ0 |
|
|
numlti.4 |
⊢ 𝐶 ∈ ℕ0 |
|
|
numlti.5 |
⊢ 𝐶 < 𝑇 |
|
Assertion |
numlti |
⊢ 𝐶 < ( ( 𝑇 · 𝐴 ) + 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
numlti.1 |
⊢ 𝑇 ∈ ℕ |
2 |
|
numlti.2 |
⊢ 𝐴 ∈ ℕ |
3 |
|
numlti.3 |
⊢ 𝐵 ∈ ℕ0 |
4 |
|
numlti.4 |
⊢ 𝐶 ∈ ℕ0 |
5 |
|
numlti.5 |
⊢ 𝐶 < 𝑇 |
6 |
1
|
nnnn0i |
⊢ 𝑇 ∈ ℕ0 |
7 |
6 4
|
num0h |
⊢ 𝐶 = ( ( 𝑇 · 0 ) + 𝐶 ) |
8 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
9 |
2
|
nnnn0i |
⊢ 𝐴 ∈ ℕ0 |
10 |
2
|
nngt0i |
⊢ 0 < 𝐴 |
11 |
1 8 9 4 3 5 10
|
numltc |
⊢ ( ( 𝑇 · 0 ) + 𝐶 ) < ( ( 𝑇 · 𝐴 ) + 𝐵 ) |
12 |
7 11
|
eqbrtri |
⊢ 𝐶 < ( ( 𝑇 · 𝐴 ) + 𝐵 ) |