Step |
Hyp |
Ref |
Expression |
1 |
|
numma.1 |
⊢ 𝑇 ∈ ℕ0 |
2 |
|
numma.2 |
⊢ 𝐴 ∈ ℕ0 |
3 |
|
numma.3 |
⊢ 𝐵 ∈ ℕ0 |
4 |
|
numma.4 |
⊢ 𝐶 ∈ ℕ0 |
5 |
|
numma.5 |
⊢ 𝐷 ∈ ℕ0 |
6 |
|
numma.6 |
⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) |
7 |
|
numma.7 |
⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) |
8 |
|
numma2c.8 |
⊢ 𝑃 ∈ ℕ0 |
9 |
|
numma2c.9 |
⊢ 𝐹 ∈ ℕ0 |
10 |
|
numma2c.10 |
⊢ 𝐺 ∈ ℕ0 |
11 |
|
numma2c.11 |
⊢ ( ( 𝑃 · 𝐴 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 |
12 |
|
numma2c.12 |
⊢ ( ( 𝑃 · 𝐵 ) + 𝐷 ) = ( ( 𝑇 · 𝐺 ) + 𝐹 ) |
13 |
8
|
nn0cni |
⊢ 𝑃 ∈ ℂ |
14 |
1 2 3
|
numcl |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) ∈ ℕ0 |
15 |
6 14
|
eqeltri |
⊢ 𝑀 ∈ ℕ0 |
16 |
15
|
nn0cni |
⊢ 𝑀 ∈ ℂ |
17 |
13 16
|
mulcomi |
⊢ ( 𝑃 · 𝑀 ) = ( 𝑀 · 𝑃 ) |
18 |
17
|
oveq1i |
⊢ ( ( 𝑃 · 𝑀 ) + 𝑁 ) = ( ( 𝑀 · 𝑃 ) + 𝑁 ) |
19 |
2
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
20 |
19 13
|
mulcomi |
⊢ ( 𝐴 · 𝑃 ) = ( 𝑃 · 𝐴 ) |
21 |
20
|
oveq1i |
⊢ ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) = ( ( 𝑃 · 𝐴 ) + ( 𝐶 + 𝐺 ) ) |
22 |
21 11
|
eqtri |
⊢ ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 |
23 |
3
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
24 |
23 13
|
mulcomi |
⊢ ( 𝐵 · 𝑃 ) = ( 𝑃 · 𝐵 ) |
25 |
24
|
oveq1i |
⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = ( ( 𝑃 · 𝐵 ) + 𝐷 ) |
26 |
25 12
|
eqtri |
⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = ( ( 𝑇 · 𝐺 ) + 𝐹 ) |
27 |
1 2 3 4 5 6 7 8 9 10 22 26
|
nummac |
⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
28 |
18 27
|
eqtri |
⊢ ( ( 𝑃 · 𝑀 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |