Step |
Hyp |
Ref |
Expression |
1 |
|
numma.1 |
⊢ 𝑇 ∈ ℕ0 |
2 |
|
numma.2 |
⊢ 𝐴 ∈ ℕ0 |
3 |
|
numma.3 |
⊢ 𝐵 ∈ ℕ0 |
4 |
|
numma.4 |
⊢ 𝐶 ∈ ℕ0 |
5 |
|
numma.5 |
⊢ 𝐷 ∈ ℕ0 |
6 |
|
numma.6 |
⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) |
7 |
|
numma.7 |
⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) |
8 |
|
nummac.8 |
⊢ 𝑃 ∈ ℕ0 |
9 |
|
nummac.9 |
⊢ 𝐹 ∈ ℕ0 |
10 |
|
nummac.10 |
⊢ 𝐺 ∈ ℕ0 |
11 |
|
nummac.11 |
⊢ ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 |
12 |
|
nummac.12 |
⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = ( ( 𝑇 · 𝐺 ) + 𝐹 ) |
13 |
1
|
nn0cni |
⊢ 𝑇 ∈ ℂ |
14 |
2
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
15 |
8
|
nn0cni |
⊢ 𝑃 ∈ ℂ |
16 |
14 15
|
mulcli |
⊢ ( 𝐴 · 𝑃 ) ∈ ℂ |
17 |
4
|
nn0cni |
⊢ 𝐶 ∈ ℂ |
18 |
10
|
nn0cni |
⊢ 𝐺 ∈ ℂ |
19 |
16 17 18
|
addassi |
⊢ ( ( ( 𝐴 · 𝑃 ) + 𝐶 ) + 𝐺 ) = ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) |
20 |
19 11
|
eqtri |
⊢ ( ( ( 𝐴 · 𝑃 ) + 𝐶 ) + 𝐺 ) = 𝐸 |
21 |
16 17
|
addcli |
⊢ ( ( 𝐴 · 𝑃 ) + 𝐶 ) ∈ ℂ |
22 |
21 18
|
addcli |
⊢ ( ( ( 𝐴 · 𝑃 ) + 𝐶 ) + 𝐺 ) ∈ ℂ |
23 |
20 22
|
eqeltrri |
⊢ 𝐸 ∈ ℂ |
24 |
13 23 18
|
subdii |
⊢ ( 𝑇 · ( 𝐸 − 𝐺 ) ) = ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) |
25 |
24
|
oveq1i |
⊢ ( ( 𝑇 · ( 𝐸 − 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) = ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) |
26 |
23 18 21
|
subadd2i |
⊢ ( ( 𝐸 − 𝐺 ) = ( ( 𝐴 · 𝑃 ) + 𝐶 ) ↔ ( ( ( 𝐴 · 𝑃 ) + 𝐶 ) + 𝐺 ) = 𝐸 ) |
27 |
20 26
|
mpbir |
⊢ ( 𝐸 − 𝐺 ) = ( ( 𝐴 · 𝑃 ) + 𝐶 ) |
28 |
27
|
eqcomi |
⊢ ( ( 𝐴 · 𝑃 ) + 𝐶 ) = ( 𝐸 − 𝐺 ) |
29 |
1 2 3 4 5 6 7 8 28 12
|
numma |
⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · ( 𝐸 − 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) |
30 |
13 23
|
mulcli |
⊢ ( 𝑇 · 𝐸 ) ∈ ℂ |
31 |
13 18
|
mulcli |
⊢ ( 𝑇 · 𝐺 ) ∈ ℂ |
32 |
|
npcan |
⊢ ( ( ( 𝑇 · 𝐸 ) ∈ ℂ ∧ ( 𝑇 · 𝐺 ) ∈ ℂ ) → ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( 𝑇 · 𝐺 ) ) = ( 𝑇 · 𝐸 ) ) |
33 |
30 31 32
|
mp2an |
⊢ ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( 𝑇 · 𝐺 ) ) = ( 𝑇 · 𝐸 ) |
34 |
33
|
oveq1i |
⊢ ( ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( 𝑇 · 𝐺 ) ) + 𝐹 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
35 |
30 31
|
subcli |
⊢ ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) ∈ ℂ |
36 |
9
|
nn0cni |
⊢ 𝐹 ∈ ℂ |
37 |
35 31 36
|
addassi |
⊢ ( ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( 𝑇 · 𝐺 ) ) + 𝐹 ) = ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) |
38 |
34 37
|
eqtr3i |
⊢ ( ( 𝑇 · 𝐸 ) + 𝐹 ) = ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) |
39 |
25 29 38
|
3eqtr4i |
⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |