Step |
Hyp |
Ref |
Expression |
1 |
|
nummul1c.1 |
⊢ 𝑇 ∈ ℕ0 |
2 |
|
nummul1c.2 |
⊢ 𝑃 ∈ ℕ0 |
3 |
|
nummul1c.3 |
⊢ 𝐴 ∈ ℕ0 |
4 |
|
nummul1c.4 |
⊢ 𝐵 ∈ ℕ0 |
5 |
|
nummul1c.5 |
⊢ 𝑁 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) |
6 |
|
nummul1c.6 |
⊢ 𝐷 ∈ ℕ0 |
7 |
|
nummul1c.7 |
⊢ 𝐸 ∈ ℕ0 |
8 |
|
nummul1c.8 |
⊢ ( ( 𝐴 · 𝑃 ) + 𝐸 ) = 𝐶 |
9 |
|
nummul1c.9 |
⊢ ( 𝐵 · 𝑃 ) = ( ( 𝑇 · 𝐸 ) + 𝐷 ) |
10 |
1 3 4
|
numcl |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) ∈ ℕ0 |
11 |
5 10
|
eqeltri |
⊢ 𝑁 ∈ ℕ0 |
12 |
11 2
|
num0u |
⊢ ( 𝑁 · 𝑃 ) = ( ( 𝑁 · 𝑃 ) + 0 ) |
13 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
14 |
1 13
|
num0h |
⊢ 0 = ( ( 𝑇 · 0 ) + 0 ) |
15 |
7
|
nn0cni |
⊢ 𝐸 ∈ ℂ |
16 |
15
|
addid2i |
⊢ ( 0 + 𝐸 ) = 𝐸 |
17 |
16
|
oveq2i |
⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐸 ) ) = ( ( 𝐴 · 𝑃 ) + 𝐸 ) |
18 |
17 8
|
eqtri |
⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐸 ) ) = 𝐶 |
19 |
4 2
|
num0u |
⊢ ( 𝐵 · 𝑃 ) = ( ( 𝐵 · 𝑃 ) + 0 ) |
20 |
19 9
|
eqtr3i |
⊢ ( ( 𝐵 · 𝑃 ) + 0 ) = ( ( 𝑇 · 𝐸 ) + 𝐷 ) |
21 |
1 3 4 13 13 5 14 2 6 7 18 20
|
nummac |
⊢ ( ( 𝑁 · 𝑃 ) + 0 ) = ( ( 𝑇 · 𝐶 ) + 𝐷 ) |
22 |
12 21
|
eqtri |
⊢ ( 𝑁 · 𝑃 ) = ( ( 𝑇 · 𝐶 ) + 𝐷 ) |