| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nummul1c.1 | ⊢ 𝑇  ∈  ℕ0 | 
						
							| 2 |  | nummul1c.2 | ⊢ 𝑃  ∈  ℕ0 | 
						
							| 3 |  | nummul1c.3 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 4 |  | nummul1c.4 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 5 |  | nummul1c.5 | ⊢ 𝑁  =  ( ( 𝑇  ·  𝐴 )  +  𝐵 ) | 
						
							| 6 |  | nummul1c.6 | ⊢ 𝐷  ∈  ℕ0 | 
						
							| 7 |  | nummul1c.7 | ⊢ 𝐸  ∈  ℕ0 | 
						
							| 8 |  | nummul2c.7 | ⊢ ( ( 𝑃  ·  𝐴 )  +  𝐸 )  =  𝐶 | 
						
							| 9 |  | nummul2c.8 | ⊢ ( 𝑃  ·  𝐵 )  =  ( ( 𝑇  ·  𝐸 )  +  𝐷 ) | 
						
							| 10 | 1 3 4 | numcl | ⊢ ( ( 𝑇  ·  𝐴 )  +  𝐵 )  ∈  ℕ0 | 
						
							| 11 | 5 10 | eqeltri | ⊢ 𝑁  ∈  ℕ0 | 
						
							| 12 | 11 | nn0cni | ⊢ 𝑁  ∈  ℂ | 
						
							| 13 | 2 | nn0cni | ⊢ 𝑃  ∈  ℂ | 
						
							| 14 | 3 | nn0cni | ⊢ 𝐴  ∈  ℂ | 
						
							| 15 | 14 13 | mulcomi | ⊢ ( 𝐴  ·  𝑃 )  =  ( 𝑃  ·  𝐴 ) | 
						
							| 16 | 15 | oveq1i | ⊢ ( ( 𝐴  ·  𝑃 )  +  𝐸 )  =  ( ( 𝑃  ·  𝐴 )  +  𝐸 ) | 
						
							| 17 | 16 8 | eqtri | ⊢ ( ( 𝐴  ·  𝑃 )  +  𝐸 )  =  𝐶 | 
						
							| 18 | 4 | nn0cni | ⊢ 𝐵  ∈  ℂ | 
						
							| 19 | 13 18 9 | mulcomli | ⊢ ( 𝐵  ·  𝑃 )  =  ( ( 𝑇  ·  𝐸 )  +  𝐷 ) | 
						
							| 20 | 1 2 3 4 5 6 7 17 19 | nummul1c | ⊢ ( 𝑁  ·  𝑃 )  =  ( ( 𝑇  ·  𝐶 )  +  𝐷 ) | 
						
							| 21 | 12 13 20 | mulcomli | ⊢ ( 𝑃  ·  𝑁 )  =  ( ( 𝑇  ·  𝐶 )  +  𝐷 ) |