Metamath Proof Explorer
		
		
		
		Description:  Closure for a numeral (with units place).  (Contributed by Mario
         Carneiro, 18-Feb-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | numnncl.1 | ⊢ 𝑇  ∈  ℕ0 | 
					
						|  |  | numnncl.2 | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | numnncl.3 | ⊢ 𝐵  ∈  ℕ | 
				
					|  | Assertion | numnncl | ⊢  ( ( 𝑇  ·  𝐴 )  +  𝐵 )  ∈  ℕ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numnncl.1 | ⊢ 𝑇  ∈  ℕ0 | 
						
							| 2 |  | numnncl.2 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 3 |  | numnncl.3 | ⊢ 𝐵  ∈  ℕ | 
						
							| 4 | 1 2 | nn0mulcli | ⊢ ( 𝑇  ·  𝐴 )  ∈  ℕ0 | 
						
							| 5 |  | nn0nnaddcl | ⊢ ( ( ( 𝑇  ·  𝐴 )  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑇  ·  𝐴 )  +  𝐵 )  ∈  ℕ ) | 
						
							| 6 | 4 3 5 | mp2an | ⊢ ( ( 𝑇  ·  𝐴 )  +  𝐵 )  ∈  ℕ |