Metamath Proof Explorer
		
		
		
		Description:  Closure for a decimal integer (zero units place).  (Contributed by Mario
       Carneiro, 9-Mar-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | numnncl2.1 | ⊢ 𝑇  ∈  ℕ | 
					
						|  |  | numnncl2.2 | ⊢ 𝐴  ∈  ℕ | 
				
					|  | Assertion | numnncl2 | ⊢  ( ( 𝑇  ·  𝐴 )  +  0 )  ∈  ℕ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numnncl2.1 | ⊢ 𝑇  ∈  ℕ | 
						
							| 2 |  | numnncl2.2 | ⊢ 𝐴  ∈  ℕ | 
						
							| 3 | 1 2 | nnmulcli | ⊢ ( 𝑇  ·  𝐴 )  ∈  ℕ | 
						
							| 4 | 3 | nncni | ⊢ ( 𝑇  ·  𝐴 )  ∈  ℂ | 
						
							| 5 | 4 | addridi | ⊢ ( ( 𝑇  ·  𝐴 )  +  0 )  =  ( 𝑇  ·  𝐴 ) | 
						
							| 6 | 5 3 | eqeltri | ⊢ ( ( 𝑇  ·  𝐴 )  +  0 )  ∈  ℕ |