Metamath Proof Explorer
Description: Closure for a decimal integer (zero units place). (Contributed by Mario
Carneiro, 9-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
numnncl2.1 |
⊢ 𝑇 ∈ ℕ |
|
|
numnncl2.2 |
⊢ 𝐴 ∈ ℕ |
|
Assertion |
numnncl2 |
⊢ ( ( 𝑇 · 𝐴 ) + 0 ) ∈ ℕ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
numnncl2.1 |
⊢ 𝑇 ∈ ℕ |
2 |
|
numnncl2.2 |
⊢ 𝐴 ∈ ℕ |
3 |
1 2
|
nnmulcli |
⊢ ( 𝑇 · 𝐴 ) ∈ ℕ |
4 |
3
|
nncni |
⊢ ( 𝑇 · 𝐴 ) ∈ ℂ |
5 |
4
|
addid1i |
⊢ ( ( 𝑇 · 𝐴 ) + 0 ) = ( 𝑇 · 𝐴 ) |
6 |
5 3
|
eqeltri |
⊢ ( ( 𝑇 · 𝐴 ) + 0 ) ∈ ℕ |